线性代数——(期末突击)概率统计习题(概率的性质、全概率公式)

目录

概率的性质

题一

全概率公式

题二

题三


概率的性质

有限可加性:

若有限个事件互不相容,则

eq?P%28A_1%5Ccup%20A_2%20%5Ccup%20...%20%5Ccup%20A_n%20%29%3DP%28A_1%29+P%28A_2%29+...+P%28A_n%29

单调性:eq?P%28B-A%29%3DP%28B%29-P%28BA%29

互补性:eq?P%28%5Coverline%7BA%7D%29%3D1-P%28A%29

加法公式:eq?P%28A%5Ccup%20B%29%3DP%28A%29+P%28B%29-P%28AB%29

eq?P%28A%5Ccup%20B%5Ccup%20C%29%3DP%28A%29+P%28B%29+P%28C%29-%28P%28AB%29+P%28BC%29+P%28AC%29%29+P%28ABC%29

可分性:eq?P%28A%29%3DP%28AB%29+P%28A%5Coverline%7BB%7D%29

题一

在某城市中共发行三种报纸:甲、乙、丙。在这个城市的居民中,订甲报的有45%,订乙报的有35%,订丙报的有30%,同时订甲、乙两报的有10%,同时订甲、丙两报的有8%,同时订乙、丙两报的有5%,同时订三种报纸的有3%,求下述百分比:

(1)只订甲报的;

(2)只订甲、乙两报的;

(3)只订一种报纸的;

(4)正好订两种报纸的;

(5)至少订一种报纸的;

(6)不订任何报纸的。


 这道题要用到加法公式以及可分性的变式。

eq?P%28A%5Ccup%20B%29%3DP%28A%29+P%28B%29-P%28AB%29

eq?P%28A%29%3DP%28AB%29+P%28A%5Coverline%7BB%7D%29%5CRightarrow%20P%28A%5Coverline%7BB%7D%29%3DP%28A%29-P%28AB%29

解:

令事件A表示订甲报;事件B表示订乙报;事件C表示订丙报。

(1)只订甲报的,

eq?%5Cbegin%7Bmatrix%7D%20P%28A%5Coverline%7BB%7D%5C%3A%20%5Coverline%7BC%7D%29%3DP%28A%5Coverline%7BB%5Ccup%20C%7D%29%3DP%28A%29-P%28A%28B%5Ccup%20C%29%29%5C%5C%20%3DP%28A%29-P%28AB%5Ccup%20BC%29%3DP%28A%29-P%28AB%29-P%28AC%29+P%28ABC%29%5C%5C%20%3D0.3%5C%5C%20%5C%5C%20%5Cend%7Bmatrix%7D

(2)只订甲、乙两报的,

eq?P%28AB%5Coverline%7BC%7D%29%3DP%28AB%29-P%28ABC%29%3D0.07

(3)只订一种报纸的,

eq?P%28B%5Coverline%7BA%7D%5C%2C%20%5Coverline%7BC%7D%29%3DP%28B%29-%5BP%28AB%29+P%28BC%29-P%28ABC%29%5D%3D0.23

eq?P%28C%5Coverline%7BA%7D%5C%3A%20%5Coverline%7BB%7D%29%3DP%28C%29-%5BP%28AC%29+P%28BC%29-P%28ABC%29%5D%3D0.20

eq?P%28A%5Coverline%7BB%7D%5C%2C%20%5Coverline%7BC%7D%5Ccup%20B%5Coverline%7BA%7D%20%5C%2C%20%5Coverline%7BC%7D%20%5Ccup%20C%20%5Coverline%7BA%7D%5C%2C%20%5Coverline%7BB%7D%29%3D0.73

(4)正好订两种报纸的,

eq?P%28AC%5Coverline%7BB%7D%29%3DP%28AC%29-P%28ABC%29%3D0.05

eq?P%28BC%5Coverline%7BA%7D%29%3DP%28BC%29-P%28ABC%29%3D0.02

eq?P%28AB%5Coverline%7BC%7D%5Ccup%20AC%5Coverline%7BB%7D%5Ccup%20BC%5Coverline%7BA%7D%29%3D0.07+0.05+0.02%3D0.14

(5)至少订一种报纸的,

eq?P%28A%5Ccup%20B%5Ccup%20C%29%3DP%28A%29+P%28B%29+P%28C%29-P%28AB%29-P%28BC%29-P%28AC%29+P%28ABC%29%3D0.45+0.35+0.30-0.10-0.05-0.08+0.03%3D0.90

(6)不订任何报纸的,

eq?P%28%5Coverline%7BA%7D%5C%2C%20%5Coverline%7BB%7D%20%5C%2C%20%5Coverline%7BC%7D%29%3D1-P%28A%5Ccup%20B%5Ccup%20C%29%3D0.1

全概率公式

eq?A_1%2CA_2%2C...%2CA_neq?%5COmega的一个划分,且eq?P%28A_i%29%3E0%2C%28i%3D1%2C2%2C...%2Cn%29,则对任何事件B,有:

eq?P%28B%29%3D%5Cunderset%7Bi%3D1%7D%7B%5Coverset%7Bn%7D%7B%5Csum%20%7D%7DP%28A_i%29P%28B%5Cmid%20A_i%29

题二

某射击小组共有20名射手,其中一级射手4人,二级射手8人,三级射手7人,四级射手1人一、二、三、四级射手能通过选拔进入决赛的概率分别是0.9、0.7、0.5、0.2,求在小组内任选一名射手,该射手能通过选拔进入决赛的概率。


解:

设事件eq?A表示 “射手能通过选拔进入比赛”;

设事件eq?B_i表示 “射手是第eq?i级射手”.eq?%28i%3D1%2C2%2C3%2C4%29

显然,eq?B_1%2CB_2%2CB_3%2CB_4构成一完备事件组,且由题意得:

20

eq?P%28A%5Cmid%20B_1%20%29%3D0.9%2CP%28A%5Cmid%20B_2%29%3D0.7%2CP%28A%5Cmid%20B_3%29%3D0.5%2CP%28A%5Cmid%20B_4%29%3D0.2

由全概率公式得到:

eq?P%28A%29%3DP%28B_1%29P%28A%5Cmid%20B_1%29+P%28B_2%29P%28A%5Cmid%20B_2%29+P%28B_3%29P%28A%5Cmid%20B_3%29+P%28B_4%29P%28A%5Cmid%20B_4%29%3D0.645

题三

某电子设备制造厂所用的晶体管是由三家元件厂提供的.根据以往的记录有以下的数据,

元件制造厂编号 次品率 提供晶体管的份额
1 0.02 0.15
2 0.01 0.80
3 0.03 0.05

设这三家工厂的产品在仓库中是均匀混合的,且无区别的标志,在仓库中随机取一只晶体管,则它是次品的概率为多少。


解:

eq?B表示“取到的是一只次品”,eq?A_i%28i%3D1%2C2%2C3%29表示“取到的产品是由第eq?i家工厂提供的”,

则有,

eq?P%28A_1%29%3D0.15%2CP%28A_2%29%3D0.80%2CP%28A_3%29%3D0.05

eq?P%28B%5Cmid%20A_1%20%29%3D0.02%2CP%28B%5Cmid%20A_2%29%3D0.01%2CP%28B%5Cmid%20A_3%29%3D0.03

 由全概率公式得:

eq?P%28B%29%3DP%28A_1%29P%28B%5Cmid%20A_1%29+P%28A_2%29P%28B%5Cmid%20A_2%29+P%28A_3%29P%28B%5Cmid%20A_3%29+P%28A_4%29P%28B%5Cmid%20A_4%29%3D0.0125


END 


你可能感兴趣的:(线性代数,概率论,学习,笔记)