1.hoare版本
根据动图的演示,整理的思路如下,
1.定义left,right,key。key默认是左边第一个元素,像两个指针,左边找比key大的,右边找比k小的,找到的话,交换二者,往返这个过程,当left与right相遇时,交换key和此时相遇的值.
#include
void swap(int*p,int*q)
{
int tmp = *p;
*p = *q;
*q = tmp;
}
int PartSort1(int* a, int left, int right)
{
int keyi =left;
while (left < right)
{
while (left<right && a[right]>=a[keyi])
{
right--;
}
while (left<right && a[left]<= a[keyi])
{
left++;
}
swap(&a[left],&a[right]);
}
swap(&a[keyi], &a[left]);
return left;
}
int main()
{
int arr[] = { 6,1,2,7,9,3,4,5,10,8 };
PartSort1(arr, 0, 9);
for (int i = 0; i < 10; i++)
{
printf("%d ", arr[i]);
}
}
单趟下来,6出现在正确的位置。
1.为什么大循环是left
2.为什么在小循环中要加left
在小循环中一直找小,找不到就会越界.
3.return的值有什么用?
return的值相当于分了界,然后就可以分别对子区间使用快排了.
针对每个子区间,使用快排
#include
void swap(int*p,int*q)
{
int tmp = *p;
*p = *q;
*q = tmp;
}
int PartSort1(int* a, int left, int right)
{
int keyi =left;
while (left < right)
{
while (left<right && a[right]>=a[keyi])
{
right--;
}
while (left<right && a[left]<= a[keyi])
{
left++;
}
swap(&a[left],&a[right]);
}
swap(&a[keyi], &a[left]);
return left;
}
void QuickSort(int* a, int begin, int end)
{
if (begin >= end)
return;
int mid=PartSort1(a,begin,end);
QuickSort(a,begin, mid - 1);
QuickSort(a,mid+1,end);
}
int main()
{
int arr[] = { 6,1,2,7,9,3,4,5,10,8 };
QuickSort(arr, 0, 9);
for (int i = 0; i < 10; i++)
{
printf("%d ", arr[i]);
}
}
递归结束条件,如果有两个数据的话还能排一次,如果只有一个数据的话就不用排了
1.为什么要右边先走,左边再走,为啥相遇的值一定比key小或者等于key?
情况1:右边找小,找不到小,一直往左走,与key碰面,相遇的值为key;
情况2:右边找到了小,停在那里,左边找大,一直找不到大,相遇点就停在了比key小的那里
情况3:交换值之后,右边一直找不到小,一直走,相遇点就是左边刚交换完,还没有动的比key小的值.
情况4:交换值之后,右边继续移动,找到小停在那,左边找不到大,相遇点就是比key小的.
2.挖坑法
1.创建临时变量key保存最左侧坑位的值,右边找小找到小之后,将找到的小值填到左边的坑位去,这里变成坑位.左边找大,找到大之后,将该值填入右侧的坑位,依次循环,相遇之后,将key放到相遇点
#include
void swap(int*p,int*q)
{
int tmp = *p;
*p = *q;
*q = tmp;
}
int PartSort2(int* a, int left, int right)
{
int key = a[left];
int pole = left;
while (left < right)
{
while (left < right && a[right] >=key)
{
right--;
}
a[pole] = a[right];
pole = right;
while (left < right && a[left] <= key)
{
left++;
}
a[pole] = a[left];
pole = left;
}
a[left] = key;
return left;
}
void QuickSort(int* a, int begin, int end)
{
if (begin >= end)
return;
int mid=PartSort2(a,begin,end);
QuickSort(a,begin, mid - 1);
QuickSort(a,mid+1,end);
}
int main()
{
int arr[] = { 6,1,2,7,9,3,4,5,10,8 };
QuickSort(arr, 0, 9);
for (int i = 0; i < 10; i++)
{
printf("%d ", arr[i]);
}
}
3.前后指针法
前后指针法
#include
void swap(int*p,int*q)
{
int tmp = *p;
*p = *q;
*q = tmp;
}
int PartSort3(int* a, int left, int right)
{
int keyi = left;
int cur = left + 1;
int prev = left;
while (cur<=right)
{
if (a[cur] < a[keyi])
{
prev++;
swap(&a[cur], &a[prev]);
}
cur++;
}
swap(&a[keyi], &a[prev]);
return prev;
}
void QuickSort(int* a, int begin, int end)
{
if (begin >= end)
return;
int mid=PartSort3(a,begin,end);
QuickSort(a,begin, mid - 1);
QuickSort(a,mid+1,end);
}
int main()
{
int arr[] = { 6,1,2,7,9,3,4,5,10,8 };
QuickSort(arr, 0, 9);
for (int i = 0; i < 10; i++)
{
printf("%d ", arr[i]);
}
}
4.快速排序非递归版
采用非递归代替递归分割步骤,当区间只有一个值时,将不在入栈.
#include
#include
#include
void swap(int*p,int*q)
{
int tmp = *p;
*p = *q;
*q = tmp;
}
typedef struct Stack//定义一个栈的结构体变量
{
int* a;
int top; // 栈顶
int capacity; // 容量
}Stack;
void StackInit(Stack* ps)
{
assert(ps);//断言,防止为空指针
ps->a = NULL;//所指向的地址为空
ps->capacity = ps->top = 0;//容量和栈中元素个数均为0
}
void StackPush(Stack* ps, int data)
{
assert(ps);
if (ps->capacity == ps->top)//如果栈中的元素个数等于栈的容量时考虑扩容,
{
int newcapcity = ps->capacity == 0 ? 4 : ps->capacity * 2;//如果刚开始时都等于0,就先给4个空间大小,后面如果满的话,容量扩大1倍
int* newnode = (int*)realloc(ps->a, sizeof(int) * newcapcity);//申请空间,将申请好的空间首地址传给newnode指针
assert(newnode);//断言,防止malloc失败
ps->a = newnode;//将newnode保存的申请空间的首地址传给ps->a,让ps->a指向创建好的空间
ps->capacity = newcapcity;//容量大小更新为新容量大小
}
ps->a[ps->top] = data;//像存数组一样存数据
ps->top++;//指向下一个
}
// 检测栈是否为空,如果为空返回非零结果,如果不为空返回0
int StackEmpty(Stack* ps)
{
assert(ps);
return ps->top == 0;//ps->top为栈中元素个数.==0栈中无元素,无元素要返回1, 无元素ps->t0p==0,这个表达式结果是1,返回1;
}
// 出栈
void StackPop(Stack* ps)
{
assert(ps);
assert(!StackEmpty(ps));//防止栈内无元素,继续出栈
ps->top--;
}
// 获取栈顶元素
int StackTop(Stack* ps)
{
assert(ps);
assert(!StackEmpty(ps));
return ps->a[ps->top - 1];//ps->top为栈中元素个数,由于数组下标是从0开始,所以栈顶元素下标为ps->top-1;
}
// 获取栈中有效元素个数
int StackSize(Stack* ps)
{
assert(ps);
return ps->top;
}
// 销毁栈
void StackDestroy(Stack* ps)
{
assert(ps);
free(ps->a);//free掉动态申请的内存
ps->a = NULL;//防止野指针
ps->capacity = ps->top = 0;//容量和栈中元素个数置为0
}
int PartSort1(int* a, int left, int right)
{
int keyi =left;
while (left < right)
{
while (left<right && a[right]>=a[keyi])
{
right--;
}
while (left<right && a[left]<= a[keyi])
{
left++;
}
swap(&a[left],&a[right]);
}
swap(&a[keyi], &a[left]);
return left;
}
void QuickSort(int* a, int begin, int end)
{
Stack st;
StackInit(&st);
StackPush(&st,end);
StackPush(&st,begin);
while (!StackEmpty(&st))
{
int left = StackTop(&st);
StackPop(&st);
int right = StackTop(&st);
StackPop(&st);
int mid = PartSort1(a, left, right);
if (mid + 1 < right)
{
StackPush(&st,right);
StackPush(&st,mid+1);
}
if (left < mid-1)
{
StackPush(&st,mid-1);
StackPush(&st,left);
}
}
StackDestroy(&st);
}
int main()
{
int arr[] = { 6,1,2,7,9,3,4,5,10,8 };
QuickSort(arr, 0, 9);
for (int i = 0; i < 10; i++)
{
printf("%d ",arr[i]);
}
}
基本思想:
归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide andConquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。 归并排序核心步骤:
#include
#include
#include
#include
void _MergeSort(int* a, int begin, int end, int* tmp)
{
if (begin >= end)
return;
int mid = (begin + end) / 2;
_MergeSort(a, begin,mid, tmp);
_MergeSort(a, mid+1, end, tmp);
int begin1 = begin;
int end1 = mid;
int begin2 = mid + 1;
int end2 = end;
int j = begin;
while (begin1 <= end1 && begin2 <= end2)
{
if (a[begin1] < a[begin2])
{
tmp[j++] = a[begin1++];
}
if (a[begin2] < a[begin1])
{
tmp[j++] = a[begin2++];
}
}
while (begin1 <= end1)
{
tmp[j++] = a[begin1++];
}
while (begin2 <= end2)
{
tmp[j++] = a[begin2++];
}
memcpy(a + begin, tmp + begin, sizeof(int) * (end - begin + 1));
}
//归并排序
void MergeSort(int* a, int n)
{
int* tmp = (int*)malloc(sizeof(int) * n);
_MergeSort(a, 0, n - 1, tmp);
free(tmp);
}
int main()
{
int arr[] = { 6,1,2,7,9,3,4,5,10,8 };
MergeSort(arr, 10);
for (int i = 0; i < 10; i++)
{
printf("%d ",arr[i]);
}
}
0-0,1-1return回0-1,
2-2return回0-2
归并排序非递归版
void MergeSortNonR(int* a, int n)
{
int* tmp = (int*)malloc(sizeof(int) * n);
if (tmp == NULL)
{
perror("malloc fail");
}
int gap = 1;
while (gap<n)
{
int j = 0;
for (int i = 0; i < n; i += 2 * gap)
{
int begin1 = i;
int end1 = i + gap - 1;
int begin2 = i + gap;
int end2 = i + 2 * gap - 1;
while (begin1 <= end1 && begin2 <= end2)
{
if (a[begin1] < a[begin2])
{
tmp[j++] = a[begin1++];
}
if (a[begin2] < a[begin1])
{
tmp[j++] = a[begin2++];
}
}
while (begin1 <= end1)
{
tmp[j++] = a[begin1++];
}
while (begin2 <= end2)
{
tmp[j++] = a[begin2++];
}
}
memcpy(a, tmp, sizeof(int) * n);
gap *= 2;
}
}
int main()
{
int arr[] = { 6,1,2,7,9,3,4,5 };
MergeSortNonR(arr, 8);
for (int i = 0; i < 8; i++)
{
printf("%d ",arr[i]);
}
}
gap=1,两个两个排序,然后整体拷贝回去.
gap=2,四个四个排序,然后整体拷贝回去.
gap=8 八个排序,然后整体拷贝回去.
int main()
{
int arr[] = { 6,1,2,7,9,3,4,5,10 };
MergeSortNonR(arr, 9);
for (int i = 0; i < 9; i++)
{
printf("%d ",arr[i]);
}
}
我们换成9个数据,发现程序崩溃.
void MergeSortNonR(int* a, int n)
{
int* tmp = (int*)malloc(sizeof(int) * n);
if (tmp == NULL)
{
perror("malloc fail");
}
int gap = 1;
while (gap<n)
{
int j = 0;
for (int i = 0; i < n; i += 2 * gap)
{
int begin1 = i;
int end1 = i + gap - 1;
int begin2 = i + gap;
int end2 = i + 2 * gap - 1;
printf("gap=%d [%d,%d][%d,%d]\n",gap, begin1, end1, begin2, end2);
while (begin1 <= end1 && begin2 <= end2)
{
if (a[begin1] < a[begin2])
{
tmp[j++] = a[begin1++];
}
if (a[begin2] < a[begin1])
{
tmp[j++] = a[begin2++];
}
}
while (begin1 <= end1)
{
tmp[j++] = a[begin1++];
}
while (begin2 <= end2)
{
tmp[j++] = a[begin2++];
}
}
memcpy(a, tmp, sizeof(int) * n);
gap *= 2;
}
}
void MergeSortNonR(int* a, int n)
{
int* tmp = (int*)malloc(sizeof(int) * n);
if (tmp == NULL)
{
perror("malloc fail");
}
int gap = 1;
while (gap<n)
{
int j = 0;
for (int i = 0; i < n; i += 2 * gap)
{
int begin1 = i;
int end1 = i + gap - 1;
int begin2 = i + gap;
int end2 = i + 2 * gap - 1;
if (end1 >= n || begin2 >= n)
{
break;
}
if (end2 >= n)
{
end2 = n - 1;
}
while (begin1 <= end1 && begin2 <= end2)
{
if (a[begin1] < a[begin2])
{
tmp[j++] = a[begin1++];
}
if (a[begin2] < a[begin1])
{
tmp[j++] = a[begin2++];
}
}
while (begin1 <= end1)
{
tmp[j++] = a[begin1++];
}
while (begin2 <= end2)
{
tmp[j++] = a[begin2++];
}
memcpy(a + i, tmp + i, sizeof(int) * (end2 - i + 1));
}
gap *= 2;
}
}
int main()
{
int arr[] = { 6,1,2,7,9,3,4,5,10 };
MergeSortNonR(arr, 9);
for (int i = 0; i < 9; i++)
{
printf("%d ",arr[i]);
}
}
1.修改边界后往回拷贝的就不是n了,而是这个end2 - i + 1
2.如果是9个数据的时候,最后一个数据在gap=8中才开始排序