这两者就是字面的意思,actual value是指真实记录的已发生的测量结果值,而predicted value是指对未发生的预测值。这里的值既可以是数值型,也可以是类别型。
这两个表示的是真实值与预测值之间是否吻合,true表示的是预测值与真实值一致,而false表示的是预测值与真实值不一致。
首先这里讨论的positive和negative不代表性别的取向,同时正和负也不代表正确或者错误。positive指条件或者事物存在,而negative指条件或者事物不存在。例如异常检测领域阳性positive代表存在异常,阴性negative代表不存在异常;如健康领域阳性positive代表检测存在病毒或者疾病,阴性negative代表检测结果是健康的。再如电子商务领域阳性positive代表点击或者成交,阴性negative代表未点击或者未成交。
如上图,左上角是一个混合矩阵,首先将所有样本分为正样本P(标记为positive)和负样本N(标记为negative),正样本经过模型预测的结果依然为正的样本记为True Positive(TP),正样本被预测为负的样本称为False Positive(FP),同理,负样本被预测为负的样本被称为True negative(TN),负样本被预测为正的样本被称为False negative(FN),所以经过模型预测后有P = TP+FN,N = FP+TN;、
反映分类器或者模型对整体样本判断正确的能力,即能将阳性(正)样本positive判定为positive和阴性(负)样本negative判定为negative的正确分类能力。值越大,性能performance越好
简单理解为,所有的样本中预测正确的比例。
这里注意,在负样本占绝对多数的场景中,不能单纯追求准确率,因为将所有样本都判定为负样本,这种情况下准确率也是非常高的。
使用sklearn计算准确率示例:
import numpy as np
from sklearn.metrics import accuracy_score
y_pred = [0, 2, 1, 3]
y_true = [0, 1, 2, 3]
print(accuracy_score(y_true, y_pred)) # 0.5
print(accuracy_score(y_true, y_pred, normalize=False)) # 2
# 在具有二元标签指示符的多标签分类案例中
print(accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))) # 0.5
accuracy_score
函数接口描述:
参数
返回值
在预测为正类的样本中,实际上属于正类的样本所占的比例。 在信息检索领域,精确率又被称为查准率。
注意: 精确率和准确率不是一个东西,请大家注意不要搞混了!
使用sklearn计算精确率:
from sklearn.metrics import precision_score
y_true = [0, 1, 2, 0, 1, 2]
y_pred = [0, 2, 1, 0, 0, 1]
print(precision_score(y_true, y_pred, average='macro')) # 0.2222222222222222
print(precision_score(y_true, y_pred, average='micro')) # 0.3333333333333333
print(precision_score(y_true, y_pred, average='weighted')) # 0.2222222222222222
print(precision_score(y_true, y_pred, average=None)) # [0.66666667 0. 0. ]
函数描述:
参数:
y_true : 一维数组,或标签指示符 / 稀疏矩阵,实际(正确的)标签.
y_pred : 一维数组,或标签指示符 / 稀疏矩阵,分类器返回的预测标签.
labels : 列表,可选值. 当average != binary时被包含的标签集合,如果average是None的话还包含它们的顺序. 在数据中存在的标签可以被排除,比如计算一个忽略多数负类的多类平均值时,数据中没有出现的标签会导致宏平均值(marco average)含有0个组件. 对于多标签的目标,标签是列索引. 默认情况下,y_true和y_pred中的所有标签按照排序后的顺序使用.
pos_label : 字符串或整型,默认为1. 如果average = binary并且数据是二进制时需要被报告的类. 若果数据是多类的或者多标签的,这将被忽略;设置labels=[pos_label]和average != binary就只会报告设置的特定标签的分数.
average : 字符串,可选值为[None, ‘binary’ (默认), ‘micro’, ‘macro’, ‘samples’, ‘weighted’]. 多类或 者多标签目标需要这个参数. 如果为None,每个类别的分数将会返回. 否则,它决定了数据的平均值类型.
binary
: 仅报告由pos_label指定的类的结果. 这仅适用于目标(y_{true, pred})是二进制的情况.micro
: 通过计算总的真正性、假负性和假正性来全局计算指标.macro
: 为每个标签计算指标,找到它们未加权的均值. 它不考虑标签数量不平衡的情况.weighted
: 为每个标签计算指标,并通过各类占比找到它们的加权均值(每个标签的正例数).它解决了’macro’的标签不平衡问题;它可以产生不在精确率和召回率之间的F-score.samples
: 为每个实例计算指标,找到它们的均值(只在多标签分类的时候有意义,并且和函数accuracy_score不同).sample_weight
: 形状为[样本数量]的数组,可选参数. 样本权重.返回值
Macro Average
宏平均是指在计算均值时使每个类别具有相同的权重,最后结果是每个类别的指标的算术平均值。
Micro Average
微平均是指计算多分类指标时赋予所有类别的每个样本相同的权重,将所有样本合在一起计算各个指标。
对比:
在所有正类样本中,被正确识别为正类别的比例是多少,通俗讲,识别出来的正类(预测的)占实际正类中的比例。
在信息检索领域,召回率又被查全率。
精确率和召回率可以观察下图理解,他们的分子相同,但分母是不一样的。而且有时候是矛盾的,极端情况下,我们只搜索出了一个结果,且是准确的,那么Precision就是100%,但是Recall就很低;而如果我们把所有结果都返回,那么比如Recall是100%,但是Precision就会很低。因此在不同的场合中需要自己判断希望Precision比较高或是Recall比较高。如果是做实验研究,可以绘制Precision-Recall曲线来帮助分析。
使用sklearn计算召回率
from sklearn.metrics import recall_score
y_true = [0, 1, 2, 0, 1, 2]
y_pred = [0, 2, 1, 0, 0, 1]
print(recall_score(y_true, y_pred, average='macro')) # 0.3333333333333333
print(recall_score(y_true, y_pred, average='micro')) # 0.3333333333333333
print(recall_score(y_true, y_pred, average='weighted')) # 0.3333333333333333
print(recall_score(y_true, y_pred, average=None)) # [1. 0. 0.]
函数参数与precision_score一样
函数说明:
返回值:
F1 score是精确率和召回率的调和平均值,计算公式为:
Precision体现了模型对负样本的区分能力,Precision越高,模型对负样本的区分能力越强;Recall体现了模型对正样本的识别能力,Recall越高,模型对正样本的识别能力越强。F1 score是两者的综合,F1 score越高,说明模型越稳健。
使用sklearn计算F1分数:
from sklearn.metrics import f1_score
y_true = [0, 1, 2, 0, 1, 2]
y_pred = [0, 2, 1, 0, 0, 1]
print(f1_score(y_true, y_pred, average='macro')) # 0.26666666666666666
print(f1_score(y_true, y_pred, average='micro')) # 0.3333333333333333
print(f1_score(y_true, y_pred, average='weighted')) # 0.26666666666666666
print(f1_score(y_true, y_pred, average=None)) # [0.8 0. 0. ]
函数参数同precision_score
函数描述:
返回值: