ARM 1.12

ARM 1.12_第1张图片

ARM 1.12_第2张图片

ARM 1.12_第3张图片

ARM 1.12_第4张图片

ARM 1.12_第5张图片

ARM 1.12_第6张图片

    norflash与nandflash的区别:

一、NAND flash和NOR flash的性能比较
1、NOR的读速度比NAND稍快一些。
2、NAND的写入速度比NOR快很多。
3、NAND的4ms擦除速度远比NOR的5s快。
4、大多数写入操作需要先进行擦除操作。
5、NAND的擦除单元更小,相应的擦除电路更少。
二、NAND flash和NOR flash的接口差别
NOR flash带有SRAM接口,有足够的地址引脚来寻址,可以很容易地存取其内部的每一个字节。
NAND器件使用复杂的I/O口来串行地存取数据,各个产品或厂商的方法可能各不相同。8个引脚用来传送控制、地址和数据信息。NAND读和写操作采用512字节的块,这一点有点像硬盘管理此类操作,很自然地,基于NAND的存储器就可以取代硬盘或其他块设备。
三、NAND flash和NOR flash的容量和成本
NAND flash的单元尺寸几乎是NOR器件的一半,由于生产过程更为简单,NAND结构可以在给定的模具尺寸内提供更高的容量,也就相应地降低了价格。
四、NAND flash和NOR flash的可靠性和耐用性
采用flahs介质时一个需要重点考虑的问题是可靠性。对于需要扩展MTBF的系统来说,Flash是非常合适的存储方案。可以从寿命(耐用性)、位交换和坏块处理三个方面来比较NOR和NAND的可靠性。
五、NAND flash和NOR flash的寿命(耐用性)
在NAND闪存中每个块的最大擦写次数是一百万次,而NOR的擦写次数是十万次。NAND存储器除了具有10比1的块擦除周期优势,典型的NAND块尺寸要比NOR器件小8倍,每个NAND存储器块在给定的时间内的删除次数要少一些。
六、位交换
所有flash器件都受位交换现象的困扰。在某些情况下(很少见,NAND发生的次数要比NOR多),一个比特位会发生反转或被报告反转了。一位的变化可能不很明显,但是如果发生在一个关键文件上,这个小小的故障可能导致系统停机。如果只是报告有问题,多读几次就可能解决了。当然,如果这个位真的改变了,就必须采用错误探测/错误更正(EDC/ECC)算法。位反转的问题更多见于NAND闪存,NAND的供应商建议使用NAND闪存的时候,同时使用
七、EDC/ECC算法
这个问题对于用NAND存储多媒体信息时倒不是致命的。当然,如果用本地存储设备来存储操作系统、配置文件或其他敏感信息时,必须使用EDC/ECC系统以确保可靠性。
八、坏块处理
NAND器件中的坏块是随机分布的。以前也曾有过消除坏块的努力,但发现成品率太低,代价太高,根本不划算。
NAND器件需要对介质进行初始化扫描以发现坏块,并将坏块标记为不可用。在已制成的器件中,如果通过可靠的方法不能进行这项处理,将导致高故障率。
九、易于使用
可以非常直接地使用基于NOR的闪存,可以像其他存储器那样连接,并可以在上面直接运行代码。
由于需要I/O接口,NAND要复杂得多。各种NAND器件的存取方法因厂家而异。在使用NAND器件时,必须先写入驱动程序,才能继续执行其他操作。向NAND器件写入信息需要相当的技巧,因为设计师绝不能向坏块写入,这就意味着在NAND器件上自始至终都必须进行虚拟映射。
十、软件支持
当讨论软件支持的时候,应该区别基本的读/写/擦操作和高一级的用于磁盘仿真和闪存管理算法的软件,包括性能优化。
在NOR器件上运行代码不需要任何的软件支持,在NAND器件上进行同样操作时,通常需要驱动程序,也就是内存技术驱动程序(MTD),NAND和NOR器件在进行写入和擦除操作时都需要MTD。
使用NOR器件时所需要的MTD要相对少一些,许多厂商都提供用于NOR器件的更高级软件,这其中包括M-System的TrueFFS驱动,该驱动被Wind River System、Microsoft、QNX Software System、Symbian和Intel等厂商所采用。

驱动还用于对DiskOnChip产品进行仿真和NAND闪存的管理,包括纠错、坏块处理和损耗平衡。

    什么叫看门狗?看门狗的作用是什么?

看门狗,又叫 watchdog timer,是一个定时器电路, 一般有一个输入,叫喂狗,一个输出到MCU的RST端,MCU正常工作的时候,每隔一端时间输出一个信号到喂狗端,给 WDT 清零,如果超过规定的时间不喂狗,(一般在程序跑飞时),WDT 定时超过,就回给出一个复位信号到MCU,是MCU复位. 防止MCU死机. 看门狗的作用就是防止程序发生死循环,或者说程序跑飞。

工作原理:在系统运行以后也就启动了看门狗的计数器,看门狗就开始自动计数,如果到了一定的时间还不去清看门狗,那么看门狗计数器就会溢出从而引起看门狗中断,造成系统复位。所以在使用有看门狗的芯片时要注意清看门狗。
硬件看门狗是利用了一个定时器,来监控主程序的运行,也就是说在主程序的运行过程中,我们要在定时时间到之前对定时器进行复位如果出现死循环,或者说PC指针不能回来。那么定时时间到后就会使单片机复位。常用的WDT芯片如MAX813 ,5045, IMP 813等,价格4~10元不等.

软件看门狗技术的原理和这差不多,只不过是用软件的方法实现,我们还是以51系列来讲,我们知道在51单片机中有两个定时器,我们就可以用这两个定时器来对主程序的运行进行监控。我们可以对T0设定一定的定时时间,当产生定时中断的时候对一个变量进行赋值,而这个变量在主程序运行的开始已经有了一个初值,在这里我们要设定的定时值要小于主程序的运行时间,这样在主程序的尾部对变量的值进行判断,如果值发生了预期的变化,就说明T0中断正常,如果没有发生变化则使程序复位。对于T1我们用来监控主程序的运行,我们给T1设定一定的定时时间,在主程序中对其进行复位,如果不能在一定的时间里对其进行复位,T1 的定时中断就会使单片机复位。在这里T1的定时时间要设的大于主程序的运行时间,给主程序留有一定的的裕量。而T1的中断正常与否我们再由T0定时中断子程序来监视。这样就够成了一个循环,T0监视T1,T1监视主程序,主程序又来监视T0,从而保证系统的稳定运行。

51 系列有专门的看门狗定时器,对系统频率进行分频计数,定时器溢出时,将引起复位.看门狗可设定溢出率,也可单独用来作为定时器使用.
    凌阳61的看门狗比较单一,一个是时间单一,第二是功能在实际的使用中只需在循环当中加入清狗的指令就OK了。

C8051Fxxx单片机内部也有一个21位的使用系统时钟的定时器,该定时器检测对其控制 寄存器的两次特定写操作的时间间隔。如果这个时间间隔超过了编程的极限值,将产生一个WDT复位。
--------------------------------------------------------------------------------
看门狗使用注意:大多数51 系列单片机都有看门狗,当看门狗没有被定时清零时,将引起复位。这可防止程序跑飞。设计者必须清楚看门狗的溢出时间以决定在合适的时候,清看门狗。清看门狗也不能太过频繁否则会造成资源浪费。程序正常运行时,软件每隔一定的时间(小于定时器的溢出周期)给定时器置数,即可预防溢出中断而引起的误复位。
看门狗运用:看门狗是恢复系统的正常运行及有效的监视管理器(具有锁定光驱,锁定任何指定程序的作用,可用在家庭中防止小孩无节制地玩游戏、上网、看录像)等具有很好的应用价值.

系统软件"看门狗"的设计思路:

1.看门狗定时器T0的设置。在初始化程序块中设置T0的工作方式,并开启中断和计数功能。系统Fosc=12 MHz,T0为16位计数器,最大计数值为(2的10次方)-1=65 535,T0输入计数频率是.Fosc/12,溢出周期为(65 535+1)/1=65 536(μs)。

2.计算主控程序循环一次的耗时。考虑系统各功能模块及其循环次数,本系统主控制程序的运行时间约为16.6 ms。系统设置"看门狗"定时器T0定时30 ms(T0的初值为65 536-30 000=35 536)。主控程序的每次循环都将刷新T0的初值。如程序进入"死循环"而T0的初值在30 ms内未被刷新,这时"看门狗"定时器T0将溢出并申请中断。

3.设计T0溢出所对应的中断服务程序。此子程序只须一条指令,即在T0对应的中断向量地址(000BH)写入"无条件转移"命令,把计算机拖回整个程序的第一行,对单片机重新进行初始化并获得正确的执行顺序。

你可能感兴趣的:(arm开发,linux,运维)