第1种是翻译环境,在这个环境中源代码被转换为可执行的机器指令。
第2种是执行环境,它用于实际执行代码。
gcc -E test.c -o test.i
gcc -S test.c
gcc -c test.c
程序执行的过程:
__FILE__ //进行编译的源文件名称
__LINE__ //文件当前的行号
__DATE__ //文件被编译的日期
__TIME__ //文件被编译的时间
__STDC__ //如果编译器遵循ANSI C,其值为1,否则未定义
__FUNCTION__ //当前函数的名称
这些预定义符号都是语言内置的。
#define是一种预处理指令
语法:
#define name stuff
例子:
#define MAX 1000
#define reg register //为 register这个关键字,创建一个简短的名字
#define do_forever for(;;) //用更形象的符号来替换一种实现
#define CASE break;case //在写case语句的时候自动把 break写上。
// 如果定义的 stuff过长,可以分成几行写,除了最后一行外,每行的后面都加一个反斜杠(续行符)。
#define DEBUG_PRINT printf("file:%s\tline:%d\t \
date:%s\ttime:%s\n" ,\
__FILE__,__LINE__ , \
__DATE__,__TIME__ )
;
比如:
#define MAX 1000;
#define MAX 1000
if(condition)
max = MAX;//等价max=1000;;变成两条语句而if不加{}只能控制一条语句
else
max = 0;
这里会出现语法错误。
#define name( parament-list ) stuff//parament-list参数列表
其中的parament-list
是一个由逗号隔开的符号表,他们可能出现在stuff中
注意2:
如:
#define SQUARE( x ) x * x
警告:
这个宏存在一个问题:
观察下面的代码段:
int a = 5;
printf("%d\n" ,SQUARE( a + 1) );
乍一看,你可能觉得这段代码将打印36这个值。
事实上,它将打印11.
为什么?
这样就比较清晰了,由替换产生的表达式并没有按照预想的次序进行求值。
在宏定义上加上两个括号,这个问题便轻松的解决了:
#define SQUARE(x) (x) * (x)
这样预处理之后就产生了预期的效果:
printf ("%d\n",(a + 1) * (a + 1) );
这里还有一个宏定义:
#define DOUBLE(x) (x) + (x)
定义中我们使用了括号,想避免之前的问题,但是这个宏可能会出现新的错误。
int a = 5;
printf("%d\n" ,10 * DOUBLE(a));
这将打印什么值呢?
warning:
看上去,好像打印100,但事实上打印的是55.
我们发现替换之后:
printf ("%d\n",10 * (5) + (5));
乘法运算先于宏定义的加法,所以出现了
55
.
这个问题,的解决办法是在宏定义表达式两边加上一对括号就可以了。
#define DOUBLE( x) ( ( x ) + ( x ) )
在程序中扩展#define定义符号和宏时,需要涉及几个步骤。
注意:
首先我们看看这样的代码:
char* p = "hello ""bit\n";
printf("hello"" bit\n");
printf("%s", p);
我们发现字符串是有自动连接的特点的。
那我们是不是可以写这样的代码?:
#define PRINT(FORMAT, VALUE)\
printf("the value is "FORMAT"\n", VALUE);
...
PRINT("%d", 10);
这里只有当字符串作为宏参数的时候才可以把字符串放在字符串中。
使用 #
,把一个宏参数变成对应的字符串。即#n=“n”
#define ADD_TO_SUM(num, value) \
sum##num += value;
//sum5
...
ADD_TO_SUM(5, 10);//作用是:给sum5增加10.
这样的连接必须产生一个合法的标识符。否则其结果是未定义的。
当宏参数在宏的定义中出现超过一次的时候,如果参数带有副作用,那么你在使用这个宏的时候就可能出现危险,导致不可预测的后果。副作用就是表达式求值的时候出现的永久性效果。
例如:
x+1;//不带副作用
x++;//带有副作用
MAX宏可以证明具有副作用的参数所引起的问题。
宏通常被应用于执行简单的运算。
比如在两个数中找出较大的一个。
#define MAX(a, b) ((a)>(b)?(a):(b))
那为什么不用函数来完成这个任务?
原因有二:
**宏的缺点:**当然和函数相比宏也有劣势的地方:
宏有时候可以做函数做不到的事情。比如:宏的参数可以出现类型,但是函数做不到。
#define MALLOC(num, type)\
(type *)malloc(num * sizeof(type))
...
//使用
MALLOC(10, int);//类型作为参数
//预处理器替换之后:
(int *)malloc(10 * sizeof(int));
一般来讲函数的宏的使用语法很相似。所以语言本身没法帮我们区分二者。
那我们平时的一个习惯是:
这条指令用于移除一个宏定义。
#undef NAME
//如果现存的一个名字需要被重新定义,那么它的旧名字首先要被移除。
命令行是在命令行中给一些符号指定值
许多C 的编译器提供了一种能力,允许在命令行中定义符号。用于启动编译过程。
例如:当我们根据同一个源文件要编译出一个程序的不同版本的时候,这个特性有点用处。(假定某个程序中声明了一个某个长度的数组,如果机器内存有限,我们需要一个很小的数组,但是另外一个机器内存大些,我们需要一个数组能够大些。)
编译指令:
//linux 环境演示
gcc -D ARRAY_SIZE=10 programe.c
在编译一个程序的时候我们如果要将一条语句(一组语句)编译或者放弃是很方便的。因为我们有条件编译指令。
调试性的代码,删除可惜,保留又碍事,所以我们可以选择性的编译。
或者跨平台代码,不同平台不用的可以选择性的编译。
1.
#if 常量表达式
//...
#endif
//常量表达式由预处理器求值。
如:
#define __DEBUG__ 1
#if __DEBUG__
//..
#endif
2.多个分支的条件编译
#if 常量表达式
//...
#elif 常量表达式
//...
#else
//...
#endif
//只会选一个执行
3.判断是否被定义
#if defined(symbol)
#ifdef symbol
#if !defined(symbol)
#ifndef symbol
//这四个结尾都要写#endif
4.嵌套指令
#if defined(OS_UNIX)
#ifdef OPTION1
unix_version_option1();
#endif
#ifdef OPTION2
unix_version_option2();
#endif
#elif defined(OS_MSDOS)
#ifdef OPTION2
msdos_version_option2();
#endif
#endif
实例:
我们已经知道, #include
指令可以使另外一个文件被编译。就像它实际出现于 #include
指令的地方一样。
这种替换的方式很简单:
预处理器先删除这条指令,并用包含文件的内容替换。
这样一个源文件被包含10次,那就实际被编译10次。
#include "filename"
查找策略:先在源文件所在目录下查找,如果该头文件未找到,编译器就像查找库函数头文件一样在标准位置查找头文件。
如果找不到就提示编译错误。
Linux环境的标准头文件的路径:
/usr/include
VS环境的标准头文件的路径:
C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\include
//这是VS2013的默认路径
注意按照自己的安装路径去找。
#include
查找头文件直接去标准路径下去查找,如果找不到就提示编译错误。
“”
的形式包含如果出现这样的场景:
comm.h和comm.c是公共模块。
test1.h和test1.c使用了公共模块。
test2.h和test2.c使用了公共模块。
test.h和test.c使用了test1模块和test2模块。
这样最终程序中就会出现两份comm.h的内容。这样就造成了文件内容的重复。
如何解决这个问题?
答案:条件编译。
每个头文件的开头写:
#ifndef __TEST_H__//__TEST_H__是名字,随便起,一般根据头文件起
#define __TEST_H__
//头文件的内容
#endif //__TEST_H__
或者:
#pragma once
就可以避免头文件的重复引入。
#error
#pragma
#line
...
不做介绍,自己去了解。
#pragma pack()在结构体部分介绍。