输入/输出
Immunarch包提供了以下函数进行数据的读取和保存:
-
repLoad
- to load the repertoires, having compatible format. -
repSave
- to save changes and to write the repertoire data to a file in a specific format (immunarch
, VDJtools).
其中,repLoad
函数可以自动检测输入文件的格式,我们可以通过?repLoad
查看更详细的数据导入信息。
目前,immunarch包可以支持以下免疫组库数据的格式:
-
"immunarch"
- 当前的软件工具,以防您忘记它:) -
"immunoseq"
- http://www.adaptivebiotech.com/immunoseq -
"mitcr"
- https://github.com/milaboratory/mitcr -
"mixcr"
- https://github.com/milaboratory/mixcr -
"migec"
- http://migec.readthedocs.io/en/latest/ -
"migmap"
- https://github.com/mikessh/migmap -
"tcr"
- https://imminfo.github.io/tcr/ -
"vdjtools"
- https://vdjtools-doc.readthedocs.io/en/master/ -
"imgt"
- http://www.imgt.org/HighV-QUEST/ -
"airr"
- http://docs.airr-community.org/en/latest/datarep/overview.html -
"10x"
- https://support.10xgenomics.com/single-cell-vdj/software/pipelines/latest/output/annotation -
"archer"
- ArcherDX clonotype tables. https://archerdx.com/immunology/
以下数据格式后续也会添加到该包中。
-
"imseq"
- http://www.imtools.org/ -
"rtcr"
- https://github.com/uubram/RTCR -
"vidjil"
- http://www.vidjil.org/
使用dplyr和 immunarch进行基本数据操作
获取丰度最高的克隆型
该函数返回给定TCR/BCR库中最丰富的克隆型:
top(immdata$data[[1]])
## # A tibble: 10 x 15
## Clones Proportion CDR3.nt CDR3.aa V.name D.name J.name V.end D.start D.end
##
## 1 173 0.0204 TGCGCC… CASSQE… TRBV4… TRBD1 TRBJ2… 16 18 26
## 2 163 0.0192 TGCGCC… CASSYR… TRBV4… TRBD1 TRBJ2… 11 13 18
## 3 66 0.00776 TGTGCC… CATSTN… TRBV15 TRBD1 TRBJ2… 11 16 22
## 4 54 0.00635 TGTGCC… CATSIG… TRBV15 TRBD2 TRBJ2… 11 19 25
## 5 48 0.00565 TGTGCC… CASSPW… TRBV27 TRBD1 TRBJ1… 11 16 23
## 6 48 0.00565 TGCGCC… CASQGD… TRBV4… TRBD1 TRBJ1… 8 13 19
## 7 40 0.00471 TGCGCC… CASSQD… TRBV4… TRBD1 TRBJ2… 16 21 26
## 8 31 0.00365 TGTGCC… CASSEE… TRBV2 TRBD1 TRBJ1… 15 17 20
## 9 30 0.00353 TGCGCC… CASSQP… TRBV4… TRBD1 TRBJ2… 14 23 28
## 10 28 0.00329 TGTGCC… CASSWV… TRBV6… TRBD1 TRBJ2… 12 20 25
## # … with 5 more variables: J.start , VJ.ins , VD.ins ,
## # DJ.ins , Sequence
过滤functional/non-functional/in-frame/out-of-frame克隆型
方便的是,函数在数据框列表上被向量化;
使用coding(immdata$data)
命令将返回编码序列的列表:
coding(immdata$data[[1]])
# A tibble: 6,443 x 15
# Clones Proportion CDR3.nt CDR3.aa V.name D.name J.name V.end D.start D.end J.start VJ.ins
#
# 1 173 0.0204 TGCGCC… CASSQE… TRBV4… TRBD1 TRBJ2… 16 18 26 31 -1
# 2 163 0.0192 TGCGCC… CASSYR… TRBV4… TRBD1 TRBJ2… 11 13 18 22 -1
# 3 66 0.00776 TGTGCC… CATSTN… TRBV15 TRBD1 TRBJ2… 11 16 22 34 -1
# 4 54 0.00635 TGTGCC… CATSIG… TRBV15 TRBD2 TRBJ2… 11 19 25 26 -1
# 5 48 0.00565 TGTGCC… CASSPW… TRBV27 TRBD1 TRBJ1… 11 16 23 31 -1
# 6 48 0.00565 TGCGCC… CASQGD… TRBV4… TRBD1 TRBJ1… 8 13 19 23 -1
# 7 40 0.00471 TGCGCC… CASSQD… TRBV4… TRBD1 TRBJ2… 16 21 26 29 -1
# 8 31 0.00365 TGTGCC… CASSEE… TRBV2 TRBD1 TRBJ1… 15 17 20 29 -1
# 9 30 0.00353 TGCGCC… CASSQP… TRBV4… TRBD1 TRBJ2… 14 23 28 34 -1
#10 28 0.00329 TGTGCC… CASSWV… TRBV6… TRBD1 TRBJ2… 12 20 25 28 -1
# … with 6,433 more rows, and 3 more variables: VD.ins , DJ.ins , Sequence
使用noncoding(immdata$data)
命令返回非编码序列的列表:
noncoding(immdata$data[[1]])
# A tibble: 89 x 15
# Clones Proportion CDR3.nt CDR3.aa V.name D.name J.name V.end D.start D.end J.start VJ.ins
#
# 1 12 0.00141 TGCGCC… CASSRP… TRBV2… TRBD1 TRBJ2… 12 17 24 27 -1
# 2 2 0.000235 TGTGCC… CASSVA… TRBV7… TRBD2 TRBJ2… 11 15 23 29 -1
# 3 2 0.000235 TGTGCC… CASSK*… TRBV2… TRBD2 TRBJ2… 14 19 23 29 -1
# 4 2 0.000235 TGTGCC… CASSRG… TRBV28 TRBD2 TRBJ2… 10 12 19 24 -1
# 5 1 0.000118 TGCAGT… CSALDG… TRBV2… TRBD2 TRBJ2… 7 18 23 26 -1
# 6 1 0.000118 TGTGCC… CASSLD… TRBV7… TRBD1 TRBJ2… 15 16 24 27 -1
# 7 1 0.000118 TGTGCC… CASSRT… TRBV6… TRBD1 TRBJ2… 11 13 20 28 -1
# 8 1 0.000118 TGCGCC… CASSQV… TRBV4… TRBD2 TRBJ1… 15 21 27 34 -1
# 9 1 0.000118 TGTGCC… CASSTD… TRBV2… TRBD2 TRBJ2… 12 15 25 27 -1
# 10 1 0.000118 TGCAGC… CSE*QG… TRBV2… TRBD1 TRBJ1… 6 10 17 28 -1
# … with 79 more rows, and 3 more variables: VD.ins , DJ.ins , Sequence
Now, the computation of the number of filtered sequences is straightforward:
nrow(inframes(immdata$data[[1]]))
# [1] 6445
And for the out-of-frame clonotypes:
nrow(outofframes(immdata$data[[1]]))
# [1] 87
获取具有特定 V 基因的克隆型子集
根据指定索引中的标签对数据表进行子集化很简单。在示例中,结果数据框仅包含带有“TRBV10-1”V 基因的记录:
filter(immdata$data[[1]], V.name == 'TRBV10-1')
## # A tibble: 24 x 15
## Clones Proportion CDR3.nt CDR3.aa V.name D.name J.name V.end D.start D.end
##
## 1 2 0.000235 TGCGCC… CASSES… TRBV1… TRBD2 TRBJ2… 16 20 25
## 2 2 0.000235 TGCGCC… CASSDG… TRBV1… TRBD1 TRBJ2… 13 15 22
## 3 1 0.000118 TGCGCC… CASSGD… TRBV1… TRBD2 TRBJ2… 8 10 15
## 4 1 0.000118 TGCGCC… CATLRS… TRBV1… TRBD1 TRBJ2… 6 7 9
## 5 1 0.000118 TGCGCC… CASSES… TRBV1… TRBD2 TRBJ2… 16 20 22
## 6 1 0.000118 TGCGCC… CASSES… TRBV1… TRBD2 TRBJ2… 16 17 21
## 7 1 0.000118 TGCGCC… CASRAS… TRBV1… TRBD2 TRBJ2… 10 13 21
## 8 1 0.000118 TGCGCC… CASRRD… TRBV1… TRBD1 TRBJ2… 8 13 19
## 9 1 0.000118 TGCGCC… CASSEV… TRBV1… TRBD1 TRBJ2… 14 19 24
## 10 1 0.000118 TGCGCC… CASSEG… TRBV1… TRBD2 TRBJ2… 13 19 27
## # … with 14 more rows, and 5 more variables: J.start , VJ.ins ,
## # VD.ins , DJ.ins , Sequence
Downsampling
# 使用repSample函数进行downsampling
ds = repSample(immdata$data, "downsample", 100)
sapply(ds, nrow)
## A2-i129 A2-i131 A2-i133 A2-i132 A4-i191 A4-i192 MS1 MS2 MS3 MS4
## 97 97 90 99 91 98 91 99 87 98
## MS5 MS6
## 88 100
ds = repSample(immdata$data, "sample", .n = 10)
sapply(ds, nrow)
## A2-i129 A2-i131 A2-i133 A2-i132 A4-i191 A4-i192 MS1 MS2 MS3 MS4
## 10 10 10 10 10 10 10 10 10 10
## MS5 MS6
## 10 10
加载MiXCR格式数据
MiXCR 介绍
MiXCR
是一种通用的免疫组库分析软件,可以用于从任何类型的测序数据中快速准确地提取 T 细胞和 B 细胞的受体库。它处理配对和单端测序数据,考虑序列质量,纠正 PCR 错误并识别种系超突变。该软件支持部分和全长分析,并使用所有可用的 RNA 或 DNA 信息,包括 V 基因片段上游和 J 基因片段下游的序列。
准备 MiXCR 数据
MiXCR 支持以下格式的测序数据:fasta、fastq、fastq.gz、双端 fastq 和 fastq.gz。在本教程中,我使用了来自此处的真实 IGH 数据。
您可以选择使用analyze amplicon
一种方式进行一次处理:
> mixcr analyze amplicon
--species hs \
--starting-material dna \
--5-end v-primers \
--3-end j-primers \
--adapters adapters-present \
--receptor-type IGH \
input_R1.fastq input_R2.fastq analysis
或单独地执行每个步骤align
,assemble
和exportClones
。
> mixcr align -s hs -OvParameters.geneFeatureToAlign=VTranscript \
--report analysis.report input_R1.fastq input_R2.fastq analysis.vdjca
Analysis Date: Mon Aug 25 15:22:39 MSK 2014
Input file(s): input_r1.fastq,input_r2.fastq
Output file: alignments.vdjca
Command line arguments: align --report alignmentReport.log input_r1.fastq input_r2.fastq alignments.vdjca
Total sequencing reads: 323248
Successfully aligned reads: 210360
Successfully aligned, percent: 65.08%
Alignment failed because of absence of V hits: 4.26%
Alignment failed because of absence of J hits: 30.19%
Alignment failed because of low total score: 0.48%
准备输入文件
运行完这些命令后,您将生成以下文件,其中包含有关计算出的克隆型的详细信息:
.
├── analysis.clonotypes..txt <-- This contains the count data we want!
├── analysis.clna <- Build clonotypes correct PCR and sequencing errors
├── analysis.vdjca <- Align raw sequences to reference sequences of segments (V, D, J) of IGH gene
├── analysis.report <- Information on the run
接下来,我们将创建一个仅包含运行中指定的克隆型文件的新文件夹,并按以下格式创建一个 metadata.txt 文件。
元数据文件“metadata.txt”必须是制表符分隔的文件,第一列名为“Sample”,并且有任意数量的具有任意名称的附加列。第一列应包含文件夹中没有扩展名的文件的基本名称。
加载到Immunarch包中
我们可以使用repLoad
函数加载已准备好的MiXCR格式文件。
加载单个文件
# 1.1) Load the package into R:
library(immunarch)
# 1.2) Replace with the path to your clonotypes file
file_path = "path/to/your/mixcr/data/analysis.clonotypes.IGH.txt"
# 1.3) Load MiXCR data with repLoad
immdata_mixcr <- repLoad(file_path)
== Step 1/3: loading repertoire files... ==
Processing "" ...
-- Parsing "/path/to/your/mixcr/data/analysis.clonotypes.IGH.txt" -- mixcr
== Step 2/3: checking metadata files and merging... ==
Processing "" ...
-- Metadata file not found; creating a dummy metadata...
== Step 3/3: splitting data by barcodes and chains... ==
Done!
加载成功后我们就可以查看相关文件的信息
r$> immdata_mixcr
$data
$data$analysis.clonotypes.IGH
# A tibble: 33,812 x 15
Clones Proportion CDR3.nt CDR3.aa V.name D.name J.name V.end D.start D.end J.start VJ.ins VD.ins DJ.ins Sequence
1 230 0.00284 TGTGTGAGACATAAACC… CVRHKPMVQ… IGHV4-39 IGHD3-10… IGHJ6 12 NA 5 36 9 3 6 TGTGTGAGACATAAACC…
2 201 0.00248 TGTGCGATTTGGGATGT… CAIWDVGLR… IGHV4-34 IGHD2-21 IGHJ4… 7 NA 5 29 10 7 3 TGTGCGATTTGGGATGT…
3 179 0.00221 TGTGCGAGAGATCATGC… CARDHAGFG… IGHV1-69… IGHD3-10 IGHJ6 13 NA 4 40 18 5 13 TGTGCGAGAGATCATGC…
4 99 0.00122 TGTGCGAGATGGGGATA… CARWGYCIN… IGHV4-39 IGHD2-8 IGHJ6 9 NA 6 64 23 2 21 TGTGCGAGATGGGGATA…
5 97 0.00120 TGTGCGAGAGGCCCCAC… CARGPTSSE… IGHV4-34 IGHD3-22… IGHJ6 13 NA 6 52 26 24 2 TGTGCGAGAGGCCCCAC…
6 97 0.00120 TGTGCGCACCACTATAC… CAHHYTSDY… IGHV2-5 IGHD1-26 IGHJ5 9 NA 2 39 19 NA 20 TGTGCGCACCACTATAC…
7 92 0.00114 TGTGCGAGAGGCCCTCC… CARGPPSMG… IGHV4-34 IGHD5-24… IGHJ4 13 NA 3 38 11 6 5 TGTGCGAGAGGCCCTCC…
8 84 0.00104 TGTGCGAGGTGGCTTGG… CARWLGEDI… IGHV4-39 IGHD3-16… IGHJ4… 8 NA 6 32 13 4 9 TGTGCGAGGTGGCTTGG…
9 83 0.00103 TGTGCGAGAGGCCGCAG… CARGRSGDP… IGHV4-34 IGHD2-2,… IGHJ5 13 NA 4 50 18 13 5 TGTGCGAGAGGCCGCAG…
10 81 0.00100 TGTGTGAGTCACCTCCT… CVSHLLDTS… IGHV1-2 IGHD2-21… IGHJ4… 8 NA 3 40 20 14 6 TGTGTGAGTCACCTCCT…
# … with 33,802 more rows
$meta
# A tibble: 1 x 1
Sample
1 analysis.clonotypes.IGH
加载整个文件夹
在本教程中,我使用了三个相同的示例来显示输出,但是您应该将所有输出的.txt克隆型文件与您的metadata.txt文件一起放在此文件夹中。
# 1.1) Load the package into R:
library(immunarch)
# 1.2) Replace with the path to the folder with your processed MiXCR data.
file_path = "/path/to/your/mixcr/data/"
# 1.3) Load MiXCR data with repLoad
immdata_mixcr <- repLoad(file_path)
== Step 1/3: loading repertoire files... ==
Processing "/path/to/your/mixcr/data/" ...
-- Parsing "/path/to/your/mixcr/data/analysis.clonotypes.IGH_1.txt" -- mixcr
-- Parsing "/path/to/your/mixcr/data/analysis.clonotypes.IGH_2.txt" -- mixcr
-- Parsing "/path/to/your/mixcr/data/analysis.clonotypes.IGH_3.txt" -- mixcr
-- Parsing "/path/to/your/mixcr/data/metadata.txt" -- metadata
== Step 2/3: checking metadata files and merging files... ==
Processing "/path/to/your/mixcr/data/" ...
-- Everything is OK!
== Step 3/3: processing paired chain data... ==
Done!
Now let’s take a look at the data! Your output should look something like below.
r$> immdata_mixcr
$data
$data$analysis.clonotypes.IGH_1
# A tibble: 32,744 x 15
Clones Proportion CDR3.nt CDR3.aa V.name D.name J.name V.end D.start D.end J.start VJ.ins VD.ins DJ.ins Sequence
1 230 0.00284 TGTGTGAGACATAAACCTATGG… CVRHKPMVQG… IGHV4-39 IGHD3-10, … IGHJ6 12 NA 5 36 9 3 6 TGTGTGAGACATAAACCTATG…
2 201 0.00248 TGTGCGATTTGGGATGTGGGAC… CAIWDVGLRH… IGHV4-34 IGHD2-21 IGHJ4,… 7 NA 5 29 10 7 3 TGTGCGATTTGGGATGTGGGA…
3 179 0.00221 TGTGCGAGAGATCATGCGGGGT… CARDHAGFGK… IGHV1-69… IGHD3-10 IGHJ6 13 NA 4 40 18 5 13 TGTGCGAGAGATCATGCGGGG…
4 99 0.00122 TGTGCGAGATGGGGATATTGTA… CARWGYCING… IGHV4-39 IGHD2-8 IGHJ6 9 NA 6 64 23 2 21 TGTGCGAGATGGGGATATTGT…
5 97 0.00120 TGTGCGAGAGGCCCCACGAGCA… CARGPTSSEW… IGHV4-34 IGHD3-22, … IGHJ6 13 NA 6 52 26 24 2 TGTGCGAGAGGCCCCACGAGC…
6 97 0.00120 TGTGCGCACCACTATACCAGCG… CAHHYTSDYY… IGHV2-5 IGHD1-26 IGHJ5 9 NA 2 39 19 NA 20 TGTGCGCACCACTATACCAGC…
7 92 0.00114 TGTGCGAGAGGCCCTCCGTCGA… CARGPPSMGT… IGHV4-34 IGHD5-24, … IGHJ4 13 NA 3 38 11 6 5 TGTGCGAGAGGCCCTCCGTCG…
8 84 0.00104 TGTGCGAGGTGGCTTGGGGAAG… CARWLGEDIR… IGHV4-39 IGHD3-16, … IGHJ4,… 8 NA 6 32 13 4 9 TGTGCGAGGTGGCTTGGGGAA…
9 83 0.00103 TGTGCGAGAGGCCGCAGCGGCG… CARGRSGDPY… IGHV4-34 IGHD2-2, I… IGHJ5 13 NA 4 50 18 13 5 TGTGCGAGAGGCCGCAGCGGC…
10 81 0.00100 TGTGTGAGTCACCTCCTCGACA… CVSHLLDTSD… IGHV1-2 IGHD2-21, … IGHJ4,… 8 NA 3 40 20 14 6 TGTGTGAGTCACCTCCTCGAC…
# … with 32,734 more rows
$data$analysis.clonotypes.IGH_2
# A tibble: 32,744 x 15
Clones Proportion CDR3.nt CDR3.aa V.name D.name J.name V.end D.start D.end J.start VJ.ins VD.ins DJ.ins Sequence
1 230 0.00284 TGTGTGAGACATAAACCTATGG… CVRHKPMVQG… IGHV4-39 IGHD3-10, … IGHJ6 12 NA 5 36 9 3 6 TGTGTGAGACATAAACCTATG…
2 201 0.00248 TGTGCGATTTGGGATGTGGGAC… CAIWDVGLRH… IGHV4-34 IGHD2-21 IGHJ4,… 7 NA 5 29 10 7 3 TGTGCGATTTGGGATGTGGGA…
3 179 0.00221 TGTGCGAGAGATCATGCGGGGT… CARDHAGFGK… IGHV1-69… IGHD3-10 IGHJ6 13 NA 4 40 18 5 13 TGTGCGAGAGATCATGCGGGG…
4 99 0.00122 TGTGCGAGATGGGGATATTGTA… CARWGYCING… IGHV4-39 IGHD2-8 IGHJ6 9 NA 6 64 23 2 21 TGTGCGAGATGGGGATATTGT…
5 97 0.00120 TGTGCGAGAGGCCCCACGAGCA… CARGPTSSEW… IGHV4-34 IGHD3-22, … IGHJ6 13 NA 6 52 26 24 2 TGTGCGAGAGGCCCCACGAGC…
6 97 0.00120 TGTGCGCACCACTATACCAGCG… CAHHYTSDYY… IGHV2-5 IGHD1-26 IGHJ5 9 NA 2 39 19 NA 20 TGTGCGCACCACTATACCAGC…
7 92 0.00114 TGTGCGAGAGGCCCTCCGTCGA… CARGPPSMGT… IGHV4-34 IGHD5-24, … IGHJ4 13 NA 3 38 11 6 5 TGTGCGAGAGGCCCTCCGTCG…
8 84 0.00104 TGTGCGAGGTGGCTTGGGGAAG… CARWLGEDIR… IGHV4-39 IGHD3-16, … IGHJ4,… 8 NA 6 32 13 4 9 TGTGCGAGGTGGCTTGGGGAA…
9 83 0.00103 TGTGCGAGAGGCCGCAGCGGCG… CARGRSGDPY… IGHV4-34 IGHD2-2, I… IGHJ5 13 NA 4 50 18 13 5 TGTGCGAGAGGCCGCAGCGGC…
10 81 0.00100 TGTGTGAGTCACCTCCTCGACA… CVSHLLDTSD… IGHV1-2 IGHD2-21, … IGHJ4,… 8 NA 3 40 20 14 6 TGTGTGAGTCACCTCCTCGAC…
# … with 32,734 more rows
$data$analysis.clonotypes.IGH_3
# A tibble: 32,744 x 15
Clones Proportion CDR3.nt CDR3.aa V.name D.name J.name V.end D.start D.end J.start VJ.ins VD.ins DJ.ins Sequence
1 230 0.00284 TGTGTGAGACATAAACCTATGG… CVRHKPMVQG… IGHV4-39 IGHD3-10, … IGHJ6 12 NA 5 36 9 3 6 TGTGTGAGACATAAACCTATG…
2 201 0.00248 TGTGCGATTTGGGATGTGGGAC… CAIWDVGLRH… IGHV4-34 IGHD2-21 IGHJ4,… 7 NA 5 29 10 7 3 TGTGCGATTTGGGATGTGGGA…
3 179 0.00221 TGTGCGAGAGATCATGCGGGGT… CARDHAGFGK… IGHV1-69… IGHD3-10 IGHJ6 13 NA 4 40 18 5 13 TGTGCGAGAGATCATGCGGGG…
4 99 0.00122 TGTGCGAGATGGGGATATTGTA… CARWGYCING… IGHV4-39 IGHD2-8 IGHJ6 9 NA 6 64 23 2 21 TGTGCGAGATGGGGATATTGT…
5 97 0.00120 TGTGCGAGAGGCCCCACGAGCA… CARGPTSSEW… IGHV4-34 IGHD3-22, … IGHJ6 13 NA 6 52 26 24 2 TGTGCGAGAGGCCCCACGAGC…
6 97 0.00120 TGTGCGCACCACTATACCAGCG… CAHHYTSDYY… IGHV2-5 IGHD1-26 IGHJ5 9 NA 2 39 19 NA 20 TGTGCGCACCACTATACCAGC…
7 92 0.00114 TGTGCGAGAGGCCCTCCGTCGA… CARGPPSMGT… IGHV4-34 IGHD5-24, … IGHJ4 13 NA 3 38 11 6 5 TGTGCGAGAGGCCCTCCGTCG…
8 84 0.00104 TGTGCGAGGTGGCTTGGGGAAG… CARWLGEDIR… IGHV4-39 IGHD3-16, … IGHJ4,… 8 NA 6 32 13 4 9 TGTGCGAGGTGGCTTGGGGAA…
9 83 0.00103 TGTGCGAGAGGCCGCAGCGGCG… CARGRSGDPY… IGHV4-34 IGHD2-2, I… IGHJ5 13 NA 4 50 18 13 5 TGTGCGAGAGGCCGCAGCGGC…
10 81 0.00100 TGTGTGAGTCACCTCCTCGACA… CVSHLLDTSD… IGHV1-2 IGHD2-21, … IGHJ4,… 8 NA 3 40 20 14 6 TGTGTGAGTCACCTCCTCGAC…
# … with 32,734 more rows
$meta
# A tibble: 3 x 4
Sample Sex Age Status
1 analysis.clonotypes.IGH_1 M 1 C
2 analysis.clonotypes.IGH_2 M 2 C
3 analysis.clonotypes.IGH_3 F 3 A
加载10x Genomics格式数据
10x Genomics简介
10x Genomics Chromium 单细胞免疫组库分析方案可同时分析以下内容:
- T 和 B 细胞的 V(D)J 转录本和克隆型。
- 5' 基因表达。
- 同一组细胞在单细胞分辨率下的细胞表面蛋白/抗原特异性(特征条形码)。
他们的Cell Ranger综合分析软件,包括以下用于免疫组库分析的工具:
cellranger mkfastq
将 Illumina 测序仪生成的原始碱基检出 (BCL) 文件解复用为 FASTQ 文件。它是 Illumina 的 bcl2fastq 的包装器,具有特定于 10x 库的附加有用功能和简化的样本表格式。cellranger vdj
从 cellranger mkfastq 中获取用于 V(D)J 库的 FASTQ 文件,并执行序列组装和配对克隆型调用。它使用 Chromium 细胞条形码和 UMI 来组装每个细胞的 V(D)J 转录本。克隆型和 CDR3 序列作为 .vloupe 文件输出,可以加载到 Loupe V(D)J 浏览器中进行可视化探索。cellranger count
为 5' 基因表达和/或特征条码(细胞表面蛋白或抗原)库获取 FASTQ 文件,并执行比对、过滤、条码计数和 UMI 计数。它使用 Chromium 细胞条形码生成特征条形码矩阵、确定聚类并执行基因表达分析。cellranger 计数管道输出一个 .cloupe 文件,该文件可以加载到Loupe Browser中以进行交互式可视化、聚类和差异表达分析。
准备10x Genomics格式数据
使用cellranger vdj
处理数据后,将输出很多结果文件。我们将使用filtered contigs.csv
文件,该文件中包含了barcode信息。
.
├── vdj_v1_mm_c57bl6_pbmc_t_filtered_contig_annotations.csv <-- 这里包含了我们想要的计数数据!
├── vdj_v1_mm_c57bl6_pbmc_t_consensus_annotations.csv
├── vdj_v1_mm_c57bl6_pbmc_t_clonotypes.csv
├── vdj_v1_mm_c57bl6_pbmc_t_all_contig_annotations.csv
├── vdj_v1_mm_c57bl6_pbmc_t_matrix.h5
├── vdj_v1_mm_c57bl6_pbmc_t_bam.bam.bai
├── vdj_v1_mm_c57bl6_pbmc_t_molecule_info.h5
├── vdj_v1_mm_c57bl6_pbmc_t_raw_feature_bc_matrix.tar.gz
├── vdj_v1_mm_c57bl6_pbmc_t_analysis.tar.gz
加载到Immunarch包中
使用repLoad
函数加载整个文件夹
# 1.1) Load the package into R:
library(immunarch)
# 1.2) Replace with the path to your processed 10x data or to the clonotypes file
file_path = "~/path/to/your/cellranger/data/"
# 1.3) Load 10x data with repLoad
immdata_10x <- repLoad(file_path)
== Step 1/3: loading repertoire files... ==
Processing "/filepath/C57BL_mice_igenrichment" ...
-- Parsing "/filepath/vdj_v1_mm_c57bl6_pbmc_t_all_contig_annotations.csv" -- 10x (filt.contigs)
[!] Removed 2917 clonotypes with no nucleotide and amino acid CDR3 sequence.
-- Parsing "/filepath/vdj_v1_mm_c57bl6_pbmc_t_clonotypes.csv" -- unsupported format, skipping
-- Parsing "/filepath/vdj_v1_mm_c57bl6_pbmc_t_consensus_annotations.csv" -- 10x (consensus)
-- Parsing "/filepath/vdj_v1_mm_c57bl6_pbmc_t_filtered_contig_annotations.csv" -- 10x (filt.contigs)
[!] Removed 1198 clonotypes with no nucleotide and amino acid CDR3 sequence.
== Step 2/3: checking metadata files and merging... ==
Processing "" ...
-- Metadata file not found; creating a dummy metadata...
== Step 3/3: splitting data by barcodes and chains... ==
Done!
加载成功后,我们来查看免疫组库的相关信息。
> immdata_10x
$data$vdj_v1_mm_c57bl6_splenocytes_t_consensus_annotations_TRA
# A tibble: 710 x 17
Clones Proportion CDR3.nt CDR3.aa V.name D.name J.name V.end D.start D.end J.start VJ.ins VD.ins DJ.ins chain ClonotypeID ConsensusID
1 55 0.00414 TGTGCTATGGC… CAMATGG… TRAV13… None TRAJ56 NA NA NA NA NA NA NA TRA clonotype306 clonotype30…
2 55 0.00414 TGTGCAGCTAG… CAASGNT… TRAV7-4 None TRAJ27 NA NA NA NA NA NA NA TRA clonotype338 clonotype33…
3 53 0.00399 TGTGCAGCAAG… CAARDSG… TRAV14… None TRAJ11 NA NA NA NA NA NA NA TRA clonotype617 clonotype61…
4 45 0.00339 TGCGCAGTCAG… CAVSNNT… TRAV3-3 None TRAJ27 NA NA NA NA NA NA NA TRA clonotype435 clonotype43…
5 43 0.00324 TGTGCAGTCAG… CAVSNMG… TRAV7D… None TRAJ9 NA NA NA NA NA NA NA TRA clonotype401 clonotype40…
6 42 0.00316 TGTGCAGCAAG… CAASPNY… TRAV14… None TRAJ21 NA NA NA NA NA NA NA TRA clonotype5 clonotype5_…
7 37 0.00279 TGTGCAGTGAG… CAVSSGG… TRAV7D… None TRAJ6 NA NA NA NA NA NA NA TRA clonotype453 clonotype45…
8 35 0.00264 TGTGCAGCAAG… CAASATS… TRAV14… None TRAJ22 NA NA NA NA NA NA NA TRA clonotype809 clonotype80…
9 32 0.00241 TGTGCAGCAAG… CAASPNY… TRAV14… None TRAJ21 NA NA NA NA NA NA NA TRA clonotype150 clonotype15…
10 32 0.00241 TGTGCTCTGGG… CALGDEA… TRAV6-… None TRAJ30 NA NA NA NA NA NA NA TRA clonotype393 clonotype39…
# … with 700 more rows
$meta
Sample Chain Source
1 vdj_v1_mm_c57bl6_splenocytes_t_all_contig_annotations_Multi Multi vdj_v1_mm_c57bl6_splenocytes_t_all_contig_annotations
2 vdj_v1_mm_c57bl6_splenocytes_t_all_contig_annotations_TRA TRA vdj_v1_mm_c57bl6_splenocytes_t_all_contig_annotations
3 vdj_v1_mm_c57bl6_splenocytes_t_all_contig_annotations_TRB TRB vdj_v1_mm_c57bl6_splenocytes_t_all_contig_annotations
5 vdj_v1_mm_c57bl6_splenocytes_t_consensus_annotations_TRA TRA vdj_v1_mm_c57bl6_splenocytes_t_consensus_annotations
6 vdj_v1_mm_c57bl6_splenocytes_t_consensus_annotations_TRB TRB vdj_v1_mm_c57bl6_splenocytes_t_consensus_annotations
注意事项:
一个重要的注意事项是某些 contigs 文件可能缺少barcode的列 - 细胞的唯一标识。这些文件可用于分析单链数据(仅 alpha 或 beta TCR),但为了分析配对链数据并充分利用单细胞技术的全部功能,您应该将带有条形码的文件读入到Immunarch中。