- 大模型的RAG微调与Agent:提升智能代理的效率与效果
WeeJot
人工智能人工智能
目录编辑引言RAG模型概述检索阶段生成阶段RAG模型的微调数据集选择损失函数设计微调策略超参数调整RAG模型在智能代理中的应用客户服务信息检索内容创作决策支持:结论引言在人工智能的快速发展中,大型预训练模型(LLMs)已经成为推动技术进步的关键力量。这些模型通过在海量数据上的预训练,掌握了丰富的语言知识和模式识别能力,从而在多种自然语言处理任务上展现出卓越的性能。然而,预训练模型的通用性也意味着它
- 【Python】bpython:增强版 Python 交互式解释器
@Unity打怪升级
Pythonpython开发语言人工智能开源软件开源ipythonpip
bpython是一个增强版的Python交互式解释器,它为开发者提供了更加友好和高效的交互体验。与Python内置的REPL(Read-Eval-Print-Loop)相比,bpython提供了更多实用功能,比如自动补全、语法高亮、实时显示函数签名等,使得编写和调试Python代码变得更加轻松。bpython非常适合初学者学习Python,因为它能够帮助开发者实时了解输入的代码效果,同时对有经验的
- DOS命令与批处理学习历程
m1nt
DOSdos批处理
DOS窗口基本操作“↑”和”↓”键——————————回看上一次执行的命令“ESC”键————————————清除命令行“F7”键————————————-查看命令历史纪录“ALT+F7”键——————————清除命令历史纪录“ALT+F10”键—————————–清除宏定义“Tab”键————————————输入文件名前几个字符按“Tab”键补齐文件名“Ctrl+C”组合键或”Break”键——
- 【Linux】shell语法入门手册 语法大全
Genevieve_xiao
linuxlinuxbash运维
shell学习笔记yxc的linuxshell语法目录概论运行方式直接用解释器执行作为可执行文件运行注释单行注释多行注释变量定义变量引用变量只读变量删除变量变量类型字符串默认变量文件参数变量其他参数相关变量数组定义调用数组元素中的值数组长度expr命令重要说明字符串表达式整数表达式逻辑关系表达式read命令echo命令显示普通字符串显示转义字符显示变量显示换行显示不换行显示结果定向至文件原样输出显
- 深度学习乐园智能零售柜商品识别
Java先进事迹
深度学习零售人工智能
1.项目简介本项目专注于智能零售柜商品识别,是为第六届信也科技杯图像算法大赛设计的方案。其核心目标是利用深度学习技术,实现对顾客选购商品的精准识别和自动化结算。当商品被放置在指定区域时,系统应自动检测并识别每件商品,生成购物清单并计算总价格,提升零售柜的自动化与便利性。此类智能系统在不需要售货员的情况下即可进行商品识别和结算,相较于传统的硬件分隔、重量判断、顾客行为监测、或射频识别技术,这种方法不
- 交换机与路由器的区别
黑石云
边缘计算
交换机和路由器是网络中的两种关键设备,它们各自承担不同的功能,主要区别体现在以下几个方面:一、工作层次与功能交换机:工作层次:交换机主要工作在OSI模型的第二层,即数据链路层。功能:交换机用于在局域网(LAN)内的不同设备之间进行数据的转发和交换。它通过学习和转发数据帧的方式来实现多个设备之间的通信,能够根据数据包的MAC地址进行数据的无冲突传输,提高网络传输的效率和稳定性。路由器:工作层次:路由
- 如何提高自动化测试覆盖率和效率
测试者家园
人工智能软件测试质量效能软件测试人工智能测试覆盖率自动化测试CI/CD质量效能IT行业
用ChatGPT做软件测试在现代软件开发中,自动化测试已经成为保证软件质量的重要手段。然而,在实践中,自动化测试的覆盖率和效率常常受到限制,导致潜在缺陷未能及时发现或测试资源浪费。因此,提升自动化测试的覆盖率和效率是每个测试团队的重要目标。本文将详细探讨如何通过合理的策略、技术和工具提高自动化测试的覆盖率和效率,并结合具体案例阐述最佳实践。一、自动化测试覆盖率的定义与重要性1.覆盖率的概念测试覆盖
- YOLOv10改进,YOLOv10改进主干网络为GhostNetV3(2024年华为的轻量化架构,全网首发),助力涨点
挂科边缘
YOLOv10改进YOLO计算机视觉目标检测人工智能python深度学习
摘要GhostNetV3是由华为诺亚方舟实验室的团队发布的,于2024年4月发布。摘要:紧凑型神经网络专为边缘设备上的应用设计,具备更快的推理速度,但性能相对适中。然而,紧凑型模型的训练策略目前借鉴自传统模型,这忽略了它们在模型容量上的差异,可能阻碍紧凑型模型的性能提升。在本文中,通过系统地研究不同训练成分的影响,我们介绍了一种用于紧凑型模型的强大训练策略。我们发现,适当的重参数化和知识蒸馏设计对
- ofa.js:无需打包的MVVM框架,前端开发的轻量之选
前端
近年来,前端开发领域涌现了许多优秀的框架,如React、Vue和Angular,它们极大地提升了开发效率和代码可维护性。然而,随着项目复杂度的增加,这些框架的学习曲线和构建工具链的复杂性也让许多开发者感到头疼。在这样的背景下,ofa.js应运而生,它号称“无需打包的MVVM框架”,试图为前端开发带来一种全新的体验。那么,ofa.js究竟有何独特之处?它与其他MVVM框架相比又有哪些优势?本文将为你
- AI赋能职业发展:程序员的未来之路
前端
程序员,这个充满挑战和机遇的职业,正站在技术浪潮的潮头。一方面,蓬勃发展的科技不断催生着新的编程语言、框架和技术,要求程序员持续学习,快速适应;另一方面,激烈的行业竞争也使得程序员需要不断提升自身技能,才能在竞争中脱颖而出。然而,AI技术的崛起为程序员的职业发展带来了新的希望,它不仅能提升效率,还能帮助程序员拓展技能,应对未来的挑战。本文将探讨AI技术,特别是像ScriptEcho这样的AI辅助工
- 高效员工培训:AI赋能企业发展新纪元
前端
在当今竞争激烈的商业环境中,员工是企业最宝贵的资产。高效的员工培训不仅能提升员工技能,提高工作效率,更能增强企业核心竞争力,推动企业持续发展。然而,传统的员工培训模式往往存在效率低下、成本高昂、缺乏互动性等诸多问题。例如,传统的线下培训需要耗费大量时间和资源,难以满足员工个性化学习需求,培训效果评估也缺乏客观数据支撑。面对这些挑战,人工智能(AI)技术的应用为企业员工培训带来了革命性的变革,为构建
- 2023 年 6 月大学英语四级考试真题(第 2 套)——纯享题目版
fo安方
英语—四级CET4学习生活管理
个人主页:fo安方的博客✨个人简历:大家好,我是fo安方,目前中南大学MBA在读,也考取过HCIECloudComputing、CCIESecurity、PMP、CISP、RHCE、CCNPRS、PEST3等证书。兴趣爱好:b站天天刷,题目常常看,运动偶尔做,学习需劳心,寻觅些乐趣。欢迎大家:这里是CSDN,是我记录我的日常学习,偶尔生活的地方,喜欢的话请一键三连,有问题请评论区讨论。导读页:这是
- 2025 年 Java 最新学习资料与学习路线——从零基础到高手的成长之路
stormjun
java学习开发语言Java学习路线Java学习教程2025Java学习路线
2025年Java最新学习资料与学习路线——从零基础到高手的成长之路大家好,欢迎来到我的频道!今天我们要聊聊Java——这门陪伴了很多程序员成长的编程语言。无论你是编程新手,还是已经走了一段编程路,但还不确定如何深入学习Java,这篇文章一定能帮到你!我会为你们梳理出一条清晰的Java学习路线,并分享一些学习资料,帮助你从零基础,到逐步成为一名熟练的Java开发者。不管你是想从事后端开发、Andr
- 小明,谈谈Vue组件动态加载有哪些方式
程序员
动态加载组件可以显著提高应用的性能,优化用户体验,尤其是在大型应用中,合理的组件加载策略尤为重要。本文将探讨几种在Vue中实现组件动态加载的具体方案。1.异步组件Vue允许将组件定义为异步组件,从而在需要时动态加载它们。这可以通过使用import()函数来实现,具体示例如下:constAsyncComponent=()=>import('./components/MyComponent.vue')
- Mybatis源码-加载映射文件与动态代理
大家好,我是半夏之沫一名金融科技领域的JAVA系统研发我希望将自己工作和学习中的经验以最朴实,最严谨的方式分享给大家,共同进步写作不易,期待大家的关注和点赞关注微信公众号【技术探界】前言本篇文章将分析Mybatis在配置文件加载的过程中,如何解析映射文件中的SQL语句以及每条SQL语句如何与映射接口的方法进行关联。在看该部分源码之前,需要具备JDK动态代理的相关知识,如果该部分不是很了解,可以先看
- 使用LangChain构建简单LLM翻译应用
fGVBSAbe
langchainjava前端python
技术背景介绍在本教程中,我们将学习如何使用LangChain构建一个简单的语言模型(LLM)应用程序,该应用程序用于将文本从英语翻译成其他语言。虽然这个应用程序比较简单,但它是学习LangChain的一个不错的开始,因为许多复杂功能都可以通过简单的提示和LLM调用构建。核心原理解析LangChain通过链式调用多个组件,使得复杂的语言处理任务变得简单易行。我们将使用LangChain的以下功能:语
- 021:为什么是卷积呢?
董董灿是个攻城狮
计算机视觉保姆级教程人工智能计算机视觉CNN
本文为合集收录,欢迎查看合集/专栏链接进行全部合集的系统学习。合集完整版请查看这里。卷积算法非常重要,但是为什么是卷积呢?在进一步学习之前,先看一看神经网络(或者叫一个AI模型)是如何完成一张图片的推理的。你肯定听说过阿尔法狗大战柯洁的故事,当时新闻一出,不知大家什么反应,反正我是被震撼到了:AI模型竟然学到了那么多的棋谱,而且人类在AI的面前毫无还手可言。但是,你有没有想过一个问题:阿尔法狗学会
- AI驱动的翻译工具:自动化处理 Univer Sheets 单元格内容翻译
背景随着工作和学习的全球化,跨语言的沟通变得尤为重要。对于使用电子表格进行数据处理和分析的用户来说,表格中的内容可能涉及不同的语言。尤其是在处理多语言数据时,翻译表格内容成为了一个高频的需求。传统的翻译方法可能需要手动复制粘贴,或者依赖外部工具,这样的方式既繁琐又浪费时间。为了解决这个问题,我们开发了一个基于AI的自动翻译工具——AICellTranslator,它能在UniverSheets中自
- 在PyTorch框架上训练ImageNet时,Dataloader加载速度慢怎么解决?
cda2024
pytorch人工智能python
在深度学习领域,PyTorch因其灵活性和易用性而受到广泛欢迎。然而,在实际应用中,特别是在处理大规模数据集如ImageNet时,Dataloader的加载速度往往成为瓶颈。本文将深入探讨这一问题,并提供多种解决方案,帮助你在PyTorch框架上高效地训练ImageNet。1.问题背景ImageNet是一个包含超过1400万张图像的大规模数据集,被广泛用于图像分类任务的研究。在PyTorch中,D
- 对于编程零基础,第一个语言是 Python 的人有什么建议?
cda2024
python开发语言
在当今数字化时代,编程已成为一项必备技能。无论你是想成为一名专业的软件开发人员,还是希望在数据分析、人工智能等领域有所建树,掌握一门编程语言都是至关重要的第一步。对于许多初学者来说,Python是一个理想的选择。它不仅语法简洁易懂,而且拥有强大的社区支持和丰富的库资源。那么,对于编程零基础且选择Python作为第一门语言的人,有哪些实用的建议呢?1.建立正确的学习心态1.1持之以恒学习编程并不是一
- “一起学 HarmonyOS”第二弹获奖名单来啦~
harmonyos
亲爱的小伙伴们,感谢参与“一起学HarmonyOS”第二弹技术问答活动,本次活动的获奖名单来啦~获奖名单学习宣传奖获奖用户完成项李游LeoLevel0Swift社区Level0奖品:技术书籍1本社区白银电子勋章「挑战者」学习萌新奖获奖用户完成项完美的荒野_sQfjyLevel1木槿Level1求醉的灌汤包Level1不开心的扁豆_cll5hnLevel1苦闷的伤疤Level1时尚的小摩托_kgMU
- Python从0到100(七十三):Python OpenCV-OpenCV实现手势虚拟拖拽
是Dream呀
pythonopencv开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- K-means聚类:解锁数据隐藏结构的钥匙
陈辰学长
kmeans聚类机器学习
K-means聚类:解锁数据隐藏结构的钥匙在机器学习的广阔领域中,无监督学习以其独特的魅力吸引了众多研究者和实践者。其中,K-means聚类作为一种经典且实用的无监督学习算法,以其简单高效的特点,广泛应用于市场细分、图像分割和基因聚类等领域。本文将深入探讨K-means聚类的工作原理、应用实例及其在这些领域中的具体应用,旨在揭示其如何智能划分数据,解锁隐藏结构,为相关领域提供精准导航。一、K-me
- ACNet:深度学习中的自适应卷积网络新星
郎轶诺
ACNet:深度学习中的自适应卷积网络新星项目地址:https://gitcode.com/gh_mirrors/ac/ACNet在深度学习领域,卷积神经网络(CNN)一直是图像处理和计算机视觉任务的核心技术。然而,传统的固定大小的卷积核无法灵活适应不同区域的信息密度。针对这一问题,ACNet(AdaptiveConvolutionNetwork)项目应运而生,它引入了一种新型的自适应卷积层,旨在
- 与机器学习的邂逅--自适应神经网络结构的深度解析
想成为高手499
机器学习与人工智能机器学习神经网络人工智能
引言随着人工智能的发展,神经网络已成为许多应用领域的重要工具。自适应神经网络(AdaptiveNeuralNetworks,ANN)因其出色的学习能力和灵活性,逐渐成为研究的热点。本文将详细探讨自适应神经网络的基本概念、工作原理、关键技术、C++实现示例及其应用案例,最后展望未来的发展趋势。自适应神经网络的基本概念什么是自适应神经网络?自适应神经网络是一种能够根据输入数据的变化和环境的动态特性自动
- 自适应神经网络架构:原理解析与代码示例
chian-ocean
机器学习神经网络人工智能深度学习
个人主页:chian-ocean文章专栏自适应神经网络结构:深入探讨与代码实现1.引言随着深度学习的不断发展,传统神经网络模型在处理复杂任务时的局限性逐渐显现。固定的网络结构和参数对于动态变化的环境和多样化的数据往往难以适应,导致了过拟合或欠拟合的问题。自适应神经网络(AdaptiveNeuralNetworks,ANN)为此提供了一种新的解决方案,它可以根据数据特征和训练情况自动调整网络结构,从
- Java并发编程:线程安全的策略与实践
喵手
零基础学Javajava安全开发语言
哈喽,各位小伙伴们,你们好呀,我是喵手。运营社区:C站/掘金/腾讯云/阿里云/华为云/51CTO;欢迎大家常来逛逛 今天我要给大家分享一些自己日常学习到的一些知识点,并以文字的形式跟大家一起交流,互相学习,一个人虽可以走的更快,但一群人可以走的更远。 我是一名后端开发爱好者,工作日常接触到最多的就是Java语言啦,所以我都尽量抽业余时间把自己所学到所会的,通过文章的形式进行输出,希望以这种方式
- kafka 学习笔记3-传统部署Kraft模式集群——筑梦之路
筑梦之路
kafka学习笔记
部署kafka集群规划一般模式下,元数据在zookeeper中,运行时动态选举controller,由controller进行Kafka集群管理。kraft模式架构下,不再依赖zookeeper集群,而是用三台controller节点代替zookeeper,元数据保存在controller中,由controller直接进行Kafka集群管理。ip主机名角色nodeid192.168.100.131
- 【AI论文】迈向大型推理模型:大型语言模型增强推理综述
东临碣石82
人工智能语言模型自然语言处理
摘要:语言长久以来被视为人类推理不可或缺的工具。大型语言模型(LLM)的突破激发了利用这些模型解决复杂推理任务的浓厚研究兴趣。研究人员已经超越了简单的自回归词元生成,引入了“思维”的概念——即代表推理过程中间步骤的词元序列。这一创新范式使LLM能够模仿复杂的人类推理过程,如树搜索和反思性思维。近期,一种新兴的学习推理趋势采用强化学习(RL)来训练LLM掌握推理过程。这种方法通过试错搜索算法自动生成
- 寄存器 reg
一条九漏鱼
verilog开发实战指南fpga开发
理论学习组合逻辑最大的缺点就是存在竞争冒险问题,会增加电路的不稳定性和不确定性,使用时许逻辑可以极大的避免这种问题,使得系统更加的稳定。时序逻辑最基础的单元就是寄存器,寄存器有存储功能,一般是D触发器(DFlipFlop,DFF)组成。由时钟脉冲控制,每个D触发器能够存储一位二进制码。D触发器的功能:在时钟信号的边沿下,将信号从输入端D送到输出端Q;同步复位D触发器moduleflip_flop(
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,