HDU4674 Trip Advisor

Problem Description
There is a strange country somewhere which its transportation network was built following some weird rules: Consider the transportation network as a connected undirected graph G with N nodes and M edges(nodes indicate cities,and people can travel from cities to cities by roads connecting them),the condition that every node in G is in at most one simple cycle holds.
One day Q people of the country want to make a travel, i_th people is located at city U i, wants to move to city V i(U i can be equal to V i),and he especially loves city P i,so he wonders if there is a path that:

1. starts at U i;
2. ends at V i;
3. for every pair of adjacent cities in path,there is a road connecting them.
4. visits every city at most once.
5. visits city P i;

As a trip advisor,your task is to tell everybody whether there is a path satsifying all his requirements.
 


Input
The input contains several test cases, terminated by EOF. Most of test cases are rather small.
Each testcase contains M + Q + 2 lines. first line contains two integers N, M (1 <= N <= 100000, 1 <= M <= 150000), the number of cities and roads; next M lines each contains two integer b, e indicates that there is a bidirectional-road connecting city b and city e;next line an integer Q (1 ≤ Q ≤ 100000) indicating number of people in that country that want to make a travel, next Q lines each contains three integers U i, V i, P i, denotes the query as we mentioned above.
 


Output
For each test case output Q lines, for i-th query, if there exists such path, output one line "Yes" without quotes, otherwise output one line "No" without quotes.
 


Sample Input
6 7 1 2 1 2 3 4 2 4 5 6 5 6 4 5 5 1 6 3 1 6 4 1 2 5 2 2 2 2 2 3
 


Sample Output
No Yes No Yes No
 


Source
 
  1 //#pragma comment(linker, "/STACK:65536000")

  2 #include <iostream>

  3 #include <stdio.h>

  4 #include <string.h>

  5 #include <vector>

  6 #include <map>

  7 #include <math.h>

  8 #include <queue>

  9 #include <set>

 10 #include <algorithm>

 11 #define clr(a,b) memset(a,b,sizeof(a))

 12 #define mpr(a,b) make_pair(a,b)

 13 #define ll long long

 14 #define eps 1e-6

 15 using namespace std;

 16 

 17 const int N=100005,M=300005;

 18 

 19 /*

 20 * HDU4674

 21 * 一个无向图,每个点最多只属于一个简单环,询问从a到b的简单路径能不能路过c

 22 * 离线处理,先缩点,假设缩点完后a为A,b为B,c为C

 23 * 对每个询问分别求出lca(A,B),lca(A,C),lca(B,C)

 24 * 还要判断两个点求lca的时候,对lca的那个点,进出的联通块分别是哪个点,这个

 25 * 在做完一边lca后再dfs一边就好了

 26 * come记录从父亲节点进入这个联通块的是哪个点

 27 * out数组在dfs中记录当前祖先的状态

 28 * gra数组用来缩点建图,first保存连到下一个联通块的编号,

 29                second保存从该联通块该边连出去的是哪个点

 30 * qu数组用来lca询问

 31 * tlca记录每个lca的值

 32 * pt表示两个点连到lca的时候,进出lca那个联通块的点,-1说明就在lca上

 33 */

 34 int n,m,q,eid,id,now,top;

 35 int head[N],ed[M],nxt[M];

 36 int dfn[N],low[N],gid[N];

 37 int sta[N],block[N];

 38 vector<pair<int,int> >gra[N],qu[N];

 39 int f[N],vis[N],come[N],out[N],fa[N];

 40 int tlca[3*N],pt[3*N][2];

 41 int aa[N],bb[N],cc[N];

 42 

 43 int findfa(int s){return s==fa[s]?s:fa[s]=findfa(fa[s]);}

 44 

 45 void addedge(int s,int e){

 46      ed[eid]=e;nxt[eid]=head[s];head[s]=eid++;

 47 }

 48 

 49 void tarjan(int s,int f,int b){

 50      dfn[s]=low[s]=++now;

 51      sta[top++]=s;block[s]=b;

 52      for(int i=head[s];~i;i=nxt[i]){

 53           int e=ed[i];

 54           if(i==f||i==(f^1))continue;

 55           if(!dfn[e]){

 56                tarjan(e,i,b);

 57                low[s]=min(low[s],low[e]);

 58           }else

 59                low[s]=min(low[s],dfn[e]);

 60      }

 61      if(low[s]==dfn[s]){

 62           id++;

 63           while(top){

 64                int k=sta[--top];

 65                gid[k]=id;

 66                if(k==s)return ;

 67           }

 68      }

 69 }

 70 

 71 void lca(int s,int f){

 72      fa[s]=s;

 73      for(int i=0;i<(int)gra[s].size();i++){

 74           int e=gra[s][i].first;

 75           if(e==f)continue;

 76           lca(e,s);

 77           fa[findfa(e)]=s;

 78      }

 79      vis[s]=1;

 80      for(int i=0;i<(int)qu[s].size();i++){

 81           int e=qu[s][i].first,d=qu[s][i].second;

 82           if(vis[e])tlca[d]=findfa(e);

 83      }

 84 }

 85 

 86 void dfs(int s,int f){

 87      for(int i=0;i<(int)qu[s].size();i++){

 88           int d=qu[s][i].second;

 89           int k=(tlca[d]==s)?-1:out[tlca[d]];

 90           if(~pt[d][0])pt[d][1]=k;

 91           else pt[d][0]=k;

 92      }

 93      for(int i=0;i<(int)gra[s].size();i++){

 94           int e=gra[s][i].first,g=gra[s][i].second;

 95           if(e==f){

 96                come[s]=g;continue;

 97           }

 98           out[s]=g;

 99           dfs(e,s);

100      }

101 }

102 

103 int main(){

104 //     freopen("/home/axorb/in","r",stdin);

105      while(~scanf("%d%d",&n,&m)){

106           eid=0;clr(head,-1);

107           for(int i=0;i<m;i++){

108                int a,b;scanf("%d%d",&a,&b);

109                addedge(a,b);addedge(b,a);

110           }

111           id=now=top=0;

112           for(int i=1;i<=n;i++)dfn[i]=0;

113           int cnt=0;

114           for(int i=1;i<=n;i++)

115                if(!dfn[i])tarjan(i,-1,++cnt);

116           for(int i=1;i<=id;i++){

117                gra[i].clear();qu[i].clear();

118           }

119           for(int i=1;i<=n;i++)

120                for(int j=head[i];~j;j=nxt[j]){

121                     int s=gid[i],e=gid[ed[j]];

122                     if(s!=e)gra[s].push_back(mpr(e,i));

123                }

124           clr(f,0);

125           scanf("%d",&q);

126           for(int i=0;i<q;i++){

127                int a,b,c;scanf("%d%d%d",&a,&b,&c);

128                //如果3个点不能到达,则答案肯定否定

129                if(block[a]!=block[b]){f[i]=1;continue;}

130                if(block[b]!=block[c]){f[i]=1;continue;}

131                if(block[a]!=block[c]){f[i]=1;continue;}

132                //如果起点和终点相同,那个路过的点也必须相同

133                if(a==b&&a!=c){f[i]=1;continue;}

134                int s=gid[a],e=gid[b],k=gid[c];

135                qu[s].push_back(mpr(e,i*3));

136                qu[e].push_back(mpr(s,i*3));

137                qu[s].push_back(mpr(k,i*3+1));

138                qu[k].push_back(mpr(s,i*3+1));

139                qu[e].push_back(mpr(k,i*3+2));

140                qu[k].push_back(mpr(e,i*3+2));

141                aa[i]=a;bb[i]=b;cc[i]=c;

142           }

143           for(int i=1;i<=id;i++)vis[i]=0;

144           for(int i=0;i<q*3;i++)

145                pt[i][0]=pt[i][1]=-1;

146           for(int i=1;i<=id;i++)

147                if(!vis[i]){

148                     lca(i,-1);

149                     dfs(i,-1);

150                }

151           for(int i=0;i<q;i++){

152                if(f[i]){

153                     puts("No");continue;

154                }

155                if(gid[aa[i]]==gid[bb[i]]){//如果A=B,那个C必须等于A

156                     if(gid[cc[i]]==gid[aa[i]])puts("Yes");

157                     else puts("No");

158                }

159                else if(gid[cc[i]]==tlca[i*3]){//如果C是lca(A,B)

160                     if(pt[i*3][1]==-1){

161                          //如果AB中有一个等于C,那么当那个点是出口且C不是出口的时候,C就不能到达

162                          int k=(gid[aa[i]]==gid[cc[i]])?aa[i]:bb[i];

163                          if(k==pt[i*3][0]&&cc[i]!=k) puts("No");

164                          else puts("Yes");

165                     }else{

166                          //如果AB都不是C,那个当AB进出C的是同一个点且不是C,C就不能到达

167                          if(pt[i*3][0]==pt[i*3][1]&&cc[i]!=pt[i*3][0]) puts("No");

168                          else puts("Yes");

169                     }

170                }else if(tlca[i*3+1]==gid[cc[i]]&&tlca[i*3+2]==tlca[i*3]){

171                     //如果C是A的祖先,且lca(A,B)=lca(C,B)

172                     //那么当父亲到C的点和C连出去到A的点是同一个点且不是C,那个C就不能到达

173                     int k=(pt[i*3+1][0]==-1)?aa[i]:pt[i*3+1][0];

174                     if(come[gid[cc[i]]]==k&&k!=cc[i])puts("No");

175                     else puts("Yes");

176                }else if(tlca[i*3+2]==gid[cc[i]]&&tlca[i*3+1]==tlca[i*3]){

177                     //同上

178                     int k=(pt[i*3+2][0]==-1)?bb[i]:pt[i*3+2][0];

179                     if(come[gid[cc[i]]]==k&&k!=cc[i])puts("No");

180                     else puts("Yes");

181                }else puts("No");

182           }

183      }

184 }
View Code

 

 

你可能感兴趣的:(HDU)