考研数学——重要函数的泰勒公式和常用等价无穷小

文章目录

    • 泰勒公式
      • 泰勒公式
      • 重要函数的泰勒公式
    • 常用等价无穷小

泰勒公式

泰勒公式

f ( x ) f(x) f(x)在点 x = 0 x=0 x=0 n n n阶可导,则存在 x = 0 x=0 x=0的一个邻域,对于该邻域内的任一点 x x x,有
f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + ⋯ + f ( n ) ( 0 ) n ! x n + o ( x n ) f(x)=f(0)+f^\prime(0)x+\frac{f^{\prime\prime}(0)}{2!}x^2+\cdots+\frac{f^{(n)}(0)}{n!}x^n+o(x^n) f(x)=f(0)+f(0)x+2!f′′(0)x2++n!f(n)(0)xn+o(xn)

重要函数的泰勒公式

sin ⁡ x = x − x 3 3 ! + o ( x 3 ) \sin x=x-\frac{x^3}{3!}+o(x^3) sinx=x3!x3+o(x3)

cos ⁡ x = 1 − x 2 2 ! + x 4 4 ! + o ( x 4 ) \cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}+o(x^4) cosx=12!x2+4!x4+o(x4)

arcsin ⁡ x = x + x 3 3 ! + o ( x 3 ) \arcsin x=x+\frac{x^3}{3!}+o(x^3) arcsinx=x+3!x3+o(x3)

tan ⁡ x = x + x 3 3 + o ( x 3 ) \tan x=x+\frac{x^3}{3}+o(x^3) tanx=x+3x3+o(x3)

arctan ⁡ x = x − x 3 3 + o ( x 3 ) \arctan x=x-\frac{x^3}{3}+o(x^3) arctanx=x3x3+o(x3)

ln ⁡ ( 1 + x ) = x − x 2 2 + x 3 3 + o ( x 3 ) \ln (1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}+o(x^3) ln(1+x)=x2x2+3x3+o(x3)

e x = 1 + x + x 2 2 ! + x 3 3 ! + o ( x 3 ) e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+o(x^3) ex=1+x+2!x2+3!x3+o(x3)

( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 ! x 2 + o ( x 2 ) (1+x)^\alpha=1+\alpha x+\frac{\alpha (\alpha-1)}{2!}x^2+o(x^2) (1+x)α=1+αx+2!α(α1)x2+o(x2)

1 1 − x = 1 + x + x 2 + x 3 + o ( x 3 ) \frac{1}{1-x}=1+x+x^2+x^3+o(x^3) 1x1=1+x+x2+x3+o(x3)

1 1 + x = 1 − x + x 2 − x 3 + o ( x 3 ) \frac{1}{1+x}=1-x+x^2-x^3+o(x^3) 1+x1=1x+x2x3+o(x3)

处理得到等价无穷小代换

x − sin ⁡ x = 1 6 x 3 + o ( x 3 ) x-\sin x=\frac{1}{6}x^3+o(x^3) xsinx=61x3+o(x3),则 x − sin ⁡ x ∼ 1 6 x 3 ( x → 0 ) x-\sin x\thicksim\frac{1}{6}x^3(x \rightarrow 0) xsinx61x3(x0)

同理有
arcsin ⁡ x − x ∼ 1 6 x 3 ( x → 0 ) , tan ⁡ x − x ∼ 1 3 x 3 ( x → 0 ) , x − arctan ⁡ x ∼ x 3 3 ( x → 0 ) \arcsin x-x \thicksim \frac{1}{6}x^3(x \rightarrow 0),\tan x-x \thicksim \frac{1}{3}x^3(x \rightarrow 0),x-\arctan x \thicksim \frac{x^3}{3}(x \rightarrow 0) arcsinxx61x3(x0),tanxx31x3(x0),xarctanx3x3(x0)

常用等价无穷小

x → 0 x \rightarrow 0 x0时,常用的等价无穷小有
sin ⁡ x ∼ x , tan ⁡ x ∼ x , arcsin ⁡ x ∼ x , ln ⁡ ( 1 + x ) ∼ x , e x ∼ x \sin x \thicksim x,\tan x \thicksim x,\arcsin x \thicksim x,\ln{(1+x)} \thicksim x,e^x \thicksim x sinxx,tanxx,arcsinxx,ln(1+x)x,exx

a x − 1 ∼ x ln ⁡ a , 1 − cos ⁡ x ∼ 1 2 x 2 , ( 1 + x ) a ∼ a x a^x-1 \thicksim x\ln a,1-\cos x \thicksim \frac{1}{2}x^2,(1+x)^a \thicksim ax ax1xlna,1cosx21x2,(1+x)aax

x − sin ⁡ x ∼ 1 6 x 3 x- \sin x \thicksim \frac{1}{6}x^3 xsinx61x3

进一步,可以推出
sin ⁡ x ∼ tan ⁡ x ∼ arcsin ⁡ x ∼ ln ⁡ ( 1 + x ) ∼ e x − 1 ∼ a x − 1 ln ⁡ a ∼ arctan ⁡ x \sin x \thicksim \tan x \thicksim \arcsin x \thicksim \ln{(1+x)} \thicksim e^x-1 \thicksim \frac{a^x-1}{\ln a} \thicksim \arctan x sinxtanxarcsinxln(1+x)ex1lnaax1arctanx
:使用时,一般都进行广义化,将 x x x替换为趋于0的函数。

考研数学——重要函数的泰勒公式和常用等价无穷小_第1张图片

你可能感兴趣的:(考研,学习)