- 100%靠谱:openai成品账户购买_安全购买openai独享账号
openai
想要轻松体验OpenAI的强大功能?避开这些坑,开启你的AI之旅!随着OpenAI的火爆,越来越多的人希望快速体验它的神奇魅力。直接购买现成账号成为了便捷之选,但也暗藏陷阱。别担心!这份升级版避坑指南,带你轻松找到安全稳定的OpenAI账号,开启你的AI之旅!购买OpenAI账号必须避免的五大坑!1️⃣确认账号来源,优先选择可靠平台️千万别贪图便宜而选择不明来源的账号!一些未经认证的第三方渠道或个
- 2024年开源且免费,八大项目管理软件“星”推荐
随着项目管理的需求不断增加,找到一款适合的项目管理软件至关重要。2024年,仍有一些开源且免费的项目管理软件脱颖而出,为团队和个人提供高效的项目管理解决方案。本文将为大家推荐八款最实用的项目管理软件。(一)禅道开源项目管理软件禅道是一款开源的、基于Web的项目管理软件,其功能丰富且操作简便,为团队提供了一套完整的项目管理解决方案。该软件不仅具备传统的项目管理功能,如任务分配、进度跟踪和问题追踪等,
- 关于claude怎么下载?请收下这份下载指南!
claude
Claude:下一代AI助手✨Claude是Anthropic公司开发的一款大型语言模型,被誉为下一代AI助手。它拥有强大的文本处理能力,能够进行对话、写作、翻译、总结等多种任务。一、Claude的产生:Claude的诞生源于Anthropic公司对构建安全、可靠且符合人类价值观的AI系统的追求❤️。该公司由前OpenAI研究人员创立,他们致力于解决大型语言模型潜在的安全和伦理问题️。Claude
- RK3588 Linux板端推理时报错Segmentation fault解决办法
kennyooooo
linux目标检测yolo嵌入式硬件
目录问题解决生成core文件修改core文件存储路径Ubuntu20.04下的异常状况利用core文件进行调试问题最近在使用rk3588跑官方提供的yolov5模型demo,能够完成单张图片的目标检测,但是在运行视频流demo时,系统报错:segmentationfault(coredumped)此时没有再给出更多的报错信息,不太好debug,在网上阅读了一些博客现在整理一下。解决在Linux下遇
- 大白话深入浅出讲嵌入式C语言多线程编程
大模型大数据攻城狮
多线程并发编程资源竞争开源软件看门狗硬件寄存器
目录第一章线程基础与操作1.1线程的创建与启动1.2线程资源的管理与释放第二章线程同步与通信2.1互斥锁与条件变量的运用2.2线程间的消息传递与共享内存第三章锁机制与线程安全3.1锁的类型与选择3.2线程安全问题的识别与修复第四章并发算法与性能优化4.1并发算法的实现4.2多线程程序的性能调优第五章高级主题与应用实例5.1线程库的实现与线程本地存储5.2真实世界中的多线程应用5.2.1网络服务器中
- 代码随想录训练营第二十三天| 39. 组合总和 40.组合总和II 131.分割回文串
chengooooooo
算法
39.组合总和题目链接/文章讲解:代码随想录视频讲解:带你学透回溯算法-组合总和(对应「leetcode」力扣题目:39.组合总和)|回溯法精讲!_哔哩哔哩_bilibili//组合问题要考虑是不是在一个集合里操作//最常见的就是递归回溯法//再考虑考虑剪枝classSolution{publicList>combinationSum(int[]candidates,inttarget){List
- DeepSeek引爆递归开发大爆炸!
极道Jdon
javascriptreactjs
DeepSeekR1的发布意味着AI的普及是必然的,因为它让人们能轻松创建新的推理数据集,并用这些数据训练强大的AI模型。现在,PrimeIntellect这家公司通过发布SYNTHETIC-1证明了这一点。这个数据集包含了140万个带有“思维链”的推理样本,都是由DeepSeekR1生成的。PrimeIntellect解释说:“DeepSeekR1的研究论文强调了生成高质量合成数据的重要性。作为
- 人工智能训练师如何做图像数据标注,从情感分析和实体分析两个个场景分析
小宝哥Code
人工智能训练师人工智能
在人工智能训练中,图像情感分析和图像实体分析是两个重要的应用场景。高质量的图像数据标注对于训练情感识别模型和目标检测/语义分割模型至关重要。本指南将详细介绍:情感分析标注(EmotionAnalysis)实体分析标注(EntityRecognition)自动化标注工具Python代码示例数据格式与存储标注数据质量评估1.情感分析(EmotionAnalysis)标注1.1情感分析简介图像情感分析(
- 【React】React 性能优化
秀秀_heo
React及其周边生态react.js性能优化前端
一、React更新流程(结合React18/19底层原理)React在props或者state发生改变时,会调用React的render方法,创建一颗不同的树。React18的更新流程基于Fiber架构和并发模式(ConcurrentMode),核心分为三个阶段:调度阶段(Scheduler)优先级调度:通过lane模型管理任务优先级(如用户交互事件优先级高于数据请求),调度器(Scheduler
- 【漫话机器学习系列】101.特征选择法之Lasso(Lasso For Feature Selection)
IT古董
漫话机器学习系列专辑机器学习人工智能
Lasso特征选择法详解1.Lasso回归简介Lasso(LeastAbsoluteShrinkageandSelectionOperator,最小绝对收缩和选择算子)是一种基于L1范数正则化的线性回归方法。它不仅能够提高模型的泛化能力,还可以自动进行特征选择,即将一些不重要的特征的系数收缩到0,从而减少模型的复杂度。2.Lasso回归的数学公式Lasso回归的目标函数如下:其中:是输入数据,w是
- 人工智能:从基础到前沿
顾漂亮
人工智能深度学习windows
目录目录1.引言2.人工智能基础2.1什么是人工智能?2.2人工智能的历史2.3人工智能的分类3.机器学习3.1机器学习概述3.2监督学习3.3无监督学习3.4强化学习4.深度学习4.1深度学习概述4.2神经网络基础4.3卷积神经网络(CNN)4.4循环神经网络(RNN)5.自然语言处理(NLP)5.1NLP概述5.2文本预处理5.3词嵌入5.4语言模型6.计算机视觉6.1计算机视觉概述6.2图像
- 2025最新Python机器视觉实战:基于OpenCV与YOLOv8的实时目标检测与跟踪(附完整代码)
emmm形成中
pythonopencvYOLO
2025最新Python机器视觉实战:基于OpenCV与YOLOv8的实时目标检测与跟踪(附完整代码)摘要:本文基于OpenCV与YOLOv8模型,实现实时目标检测与跟踪功能,支持多类别目标识别与运动轨迹绘制。代码兼容Python3.7+,步骤清晰且经过稳定性测试,适合中高级开发者参考。所有依赖库均为最新版本,确保运行流畅。一、环境准备安装依赖库pipinstallopencv-python==4
- 深入浅出机器学习:概念、算法与实践
倔强的小石头_
AI机器学习算法人工智能
目录引言机器学习的基本概念什么是机器学习机器学习的基本要素机器学习的主要类型监督学习(SupervisedLearning)无监督学习(UnsupervisedLearning)强化学习(ReinforcementLearning)机器学习的一般流程总结引言在当今数字化时代,数据量呈爆炸式增长。机器学习作为一门多领域交叉学科,致力于让计算机系统从数据中自动学习模式和规律,进而实现对未知数据的预测和
- TensorFlow 2 来训练一个线性回归模型
大数据张老师
tensorflow线性回归人工智能
本节将通过一个简单的示例,带领大家了解如何使用TensorFlow2来训练一个线性回归模型。这个例子将帮助大家掌握如何从数据处理、模型构建、训练到评估等步骤,逐步实现一个基础的机器学习任务。下面是代码的详细讲解。importtensorflowastfimportpandasaspd首先,我们导入了TensorFlow和Pandas库。TensorFlow用于构建和训练我们的机器学习模型,Pand
- 蓝禾,oppo,游卡,汤臣倍健,康冠科技,作业帮,高途教育25届春招内推
weixin_53585422
求职招聘算法嵌入式硬件java前端
蓝禾,oppo,游卡,汤臣倍健,康冠科技,作业帮,高途教育25届春招内推①康冠科技【职位】算法、软件、硬件、技术,结构设计,供应链,产品,职能,商务【一键内推】https://sourl.cn/2Mm9Lk【内推码】EVBM88②蓝禾(秋招投过还可投)【岗位】国内/国际电商运营,设计,营销,职能,工作地:深圳【请选择“校园大使推荐码”】71T3HES【一键内推】https://sourl.cn/6
- 边缘计算与联邦学习驱动医疗影像特征工程优化
智能计算研究中心
其他
内容概要随着医疗影像数据规模的指数级增长与多模态成像技术的普及,传统集中式特征工程方法面临数据孤岛、隐私泄露及计算效率等多重挑战。本研究针对医疗影像分析场景中跨机构数据共享的复杂性,提出基于边缘计算与联邦学习的协同优化框架,通过分布式特征工程重构医学图像的解析范式。该框架以卷积神经网络为核心,结合多阶段数据预处理流程(包括噪声抑制、模态对齐及标准化处理),实现跨设备医疗影像的特征表示统一化。在模型
- 深度学习框架与边缘计算融合驱动医疗金融模型优化新路径
智能计算研究中心
其他
内容概要随着边缘计算与深度学习框架的深度融合,医疗与金融领域的模型优化正在突破传统算力与隐私保护的瓶颈。当前,TensorFlow、PyTorch等主流框架通过轻量化改造(如TensorFlowLite与PyTorchMobile)逐步适应边缘设备的资源限制,同时结合联邦学习技术构建分布式训练网络。这种技术协同不仅降低了医疗影像诊断中的数据传输延迟,还通过动态模型压缩策略(如量化与剪枝)将金融预测
- 边缘计算与联邦学习驱动医疗金融预测及模型可解释性技术突破
智能计算研究中心
其他
内容概要当前人工智能技术正经历多维度融合与迭代升级,边缘计算与联邦学习的协同创新成为突破性方向。通过将计算资源下沉至终端设备,边缘计算有效缓解了传统中心化架构的延迟与带宽压力,而联邦学习则在保障数据隐私的前提下,实现了跨机构模型的分布式训练。这种技术组合在医疗诊断与金融预测领域展现出显著优势,例如通过部署轻量化模型实现实时病理分析,或构建跨银行风险预测系统,同时满足监管合规需求。在模型优化层面,自
- 大模型WebUI:Gradio全解11——使用transformers.agents构建Gradio UI(3)
龙焰智能
gradiotoolsload_tooltoolboxToolCollection
大模型WebUI:Gradio全解11——使用transformers.agents构建GradioUI(3)前言本篇摘要11.使用transformers.agents构建GradioUI11.3创建和使用工具Tools11.3.1默认工具箱与load_tool11.3.2创建新工具11.3.3管理代理的工具箱toolbox11.3.4使用工具集合ToolCollection参考文献前言本系列文
- 【机器学习算法选型:分类与回归】 常见分类算法介绍
云博士的AI课堂
哈佛博后带你玩转机器学习机器学习分类回归分类与回归机器学习算法选型深度学习人工智能
第2节:常见分类算法介绍在机器学习中,分类算法是用于预测一个样本所属类别的工具。无论是在金融风控、医疗诊断、图像识别还是推荐系统等领域,分类算法都扮演着至关重要的角色。不同的分类算法各自有不同的优缺点和应用场景,因此了解这些算法的特点及其适用条件,是构建高效分类模型的关键。1.逻辑回归(LogisticRegression)介绍逻辑回归是一种广泛应用于二分类问题的线性模型,其目标是根据输入特征预测
- 人工智能学习框架
静默.\\
人工智能学习
人工智能学习框架概述随着人工智能技术的飞速发展,选择合适的机器学习或深度学习框架对于项目的成功至关重要。这些框架提供了强大的工具和库,使得开发者能够更高效地构建、训练和部署模型。目前市面上有许多流行的AI学习框架,每种框架都有其独特的特点和适用场景。首先,TensorFlow是由Google开发的一个开源机器学习框架,支持从简单的线性回归到复杂的神经网络等多种模型类型。它以其高度灵活性和可扩展性著
- MD5解密为什么不能成功(解密算法)
浪九天
算法Javajava算法
MD5解密为什么不能成功(解密算法)首先MD5的密文数量36的32次方;不加盐,不迭代,A-Z,a-z,0-9,8-16位密码,计算量:62的8次方至62的16次方工具类暴力算法结合数据库实现补充说明(原因)生成密文的工具类packagecom.decrypt;importorg.apache.shiro.crypto.hash.SimpleHash;publicclassDecyrpt{priv
- 深入理解 Uniapp 中的 px 与 rpx
烂蜻蜓
uni-app前端htmlcssvue.js
一、引言在Uniapp开发中,页面布局是构建良好用户体验的基础,而选择合适的长度单位则是页面布局的关键一环。其中,px(像素)和rpx(响应式像素)是我们最常接触到的两种单位。本文将深入浅出地介绍这两个单位,帮助大家在实际开发中做出更合适的选择。二、传统的px单位2.1什么是pxpx即像素(Pixel),它是屏幕上显示的最小单位。想象一下,屏幕就像由无数个小方格组成的大画布,每个小方格就是一个像素
- 头部C9科班本硕研二,拿到大模型算法岗
大模型与自然语言处理
NLP与大模型人工智能大模型深度学习面试题算法暑期实习
是时候准备春招和实习了。节前,我们邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。针对新手如何入门算法岗、该如何准备面试攻略、面试常考点、大模型技术趋势、算法项目落地经验分享等热门话题进行了深入的讨论。总结链接如下:《大模型面试宝典》(2025版)发布!喜欢本文记得收藏、关注、点赞。bg:头部C9科班本硕研二,2中厂大模型应用相关实习年前最后几天,拿到了Offer,面试感觉从一到三面压力逐
- 区块链相关方法-波特五力分析模型
礼小七
区块链网络
一、定义:波特五力分析模型(Porter'sFiveForcesFramework)是迈克尔・波特(MichaelPorter)于1979年提出的一种用于分析行业竞争态势的工具。它通过考察五种力量的相互作用来评估一个行业的吸引力和竞争环境,这五种力量分别是现有竞争者的威胁、潜在进入者的威胁、替代品的威胁、供应商的议价能力和购买者的议价能力。二、各要素详细介绍现有竞争者的威胁(ThreatofExi
- 「En」通过DeepSeek生成雅思英语考试学习计划
何曾参静谧
「En」英语从零到一学习英语
✨博客主页何曾参静谧的博客(✅关注、点赞、⭐收藏、转发)全部专栏(专栏会有变化,以最新发布为准)「Win」Windows程序设计「IDE」集成开发环境「定制」定制开发集合「C/C++」C/C++程序设计「DSA」数据结构与算法「UG/NX」NX二次开发「QT」QT5程序设计「File」数据文件格式「UG/NX」BlockUI集合「Py」Python程序设计「Math」探秘数学世界「PK」Paras
- 快速下载ollama 模型文件脚本
谢平康
pythonlinux开发语言
这里简单的通过modelscope下载,以下用简单的shell来下载1、首先要有一个python32、直接下载到当前目录的方法,这里以qwen2.5来做例子,其它的可自行修改#为了不影响其它环境,用venv当前目前做个新的环境pyhton3-mvenvvenv#激活环境source./venv/bin/activate#安装所需要的库pipinstallimportlib_metadatamode
- Grok-3:人工智能领域的新突破
大模型之路
大模型(LLM)人工智能Grok-3llm
近日,xAI公司推出的最新AI模型——Grok-3,在ChatbotArena中一举夺魁,以破纪录的1402分傲视群雄,不仅刷新了大型语言模型(LLMs)的评分上限,更标志着AI技术的一次重大飞跃。本文将深入探讨Grok-3的技术突破、命名背后的深意、对AI领域的深远影响以及xAI公司的未来展望。一、Grok-3:技术突破与命名寓意Grok-3的横空出世,无疑给AI界带来了一场地震。它不仅在Cha
- 快速排序(Quick Sort)
闯闯爱学习
算法排序算法数据结构
1、快速排序的核心是分治思想:分治思想(DivideandConquer)是一种通过分解问题、解决子问题、合并结果来解决复杂问题的策略。其核心可概括为:分解:将大规模问题拆分为多个相互独立且形式相同的子问题(如将蛋糕切成小块);解决:递归或直接处理子问题(当子问题足够简单时直接求解);合并:将子问题的解整合为原问题的解(如拼合小蛋糕块还原整体)。假设我们的目标依然是按从小到大的顺序排列,我们找到数
- 将 Llama 3 与 Ollama 和 Python 结合使用 使用 Ollama API 访问这一领先模型
知识大胖
NVIDIAGPU和大语言模型开发教程Python源码大全llamapython开发语言
Meta最近发布的新法学硕士Llama3在人工智能领域引起了轰动。例如,请查看我对下面型号的70B版本的评论和测试。在我的测试中,Llama3令人印象深刻,但它们是使用聊天界面进行的。如果您想对此模型进行编程以执行有用的任务或使用Python创建您自己的模型聊天界面,该怎么办?本文将向您准确展示如何使用Ollama来做到这一点。如果您不知道Ollama是什么,这是一个允许您在本地下载Llama3等
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比