- 成功学不能学
润物老师
成功是一个小概率事件,混得太惨也是。大部分人,还是过着不太成功不太失败的日子。如果我们要修理一辆汽车,你会只坚持用扳手,不用螺丝刀么?我们既可以用扳手,也可以用螺丝刀。关键是,目标是把车修好。要点拆解一、成功永远是小概率事件通过对炼金术的案例,以及数学中的正态分布曲线,即无论什么群体,随机变量的概率分布大多数总会停留在某一个值前后,离这个值越远,出现的概率越少。来说明,成功也是个小概率事件,混的太
- PDF和CDF
薛定谔的猫_大雪
概率论
在概率论和统计学中,PDF和CDF是两种描述随机变量分布的重要函数:ProbabilityDensityFunction(PDF):概率密度函数是用来描述连续随机变量可能取值的概率分布的函数。对于一个连续型随机变量X,其PDFf(x)定义为在某个取值x处的概率密度,即X在该值附近出现的概率密度。PDF的积分可以得到概率,即在某个区间内随机变量出现的概率。CumulativeDensityFunct
- 蒙特卡罗——排队模拟python代码实现
潮汐退涨月冷风霜
python开发语言蒙特卡罗
排队问题描述数学知识:指数分布指数分布随机变量生成的数学原理指数分布的定义指数分布是连续概率分布,常用于描述某些事件发生的时间间隔。其概率密度函数(PDF)为:f(x;λ)=λe−λxf(x;\lambda)=\lambdae^{-\lambdax}f(x;λ)=λe−λx其中,λ\lambdaλ是速率参数,λ>0\lambda>0λ>0,并且x≥0x\geq0x≥0。生成指数分布随机变量的原理要
- Matlab 简单计算PDF和CDF
奔跑着的孩子
通信概念最大似然算法
CDF(cumulativedistributionfunction)叫做累积分布函数,描述一个实数随机变量X的概率分布,是概率密度函数的积分。它的最主要作用就是观测某些数值也就是随机变量的取值在那个附近出现的概率比较大,它是一个增函数.可以有效的处理一些异常值.随机变量小于或者等于某个数值的概率P(X=b(i)&a(s)<=b(i+1)n(i)=n(i)+1;s=s+1;endendendsum
- 【统计学习方法读书笔记】(四)朴素贝叶斯法
Y.G Bingo
统计学习方法人工智能统计学习概率概率论
终于到了贝叶斯估计这章了,贝叶斯估计在我心中一直是很重要的地位,不过发现书中只用了不到10页介绍这一章,深度内容后,发现贝叶斯估计的基础公式确实不多,但是由于正态分布在生活中的普遍性,贝叶斯估计才应用的非常多吧!默认输入变量用XXX表示,输出变量用YYY表示概率公式描述:P(X=x)P(X=x)P(X=x):表示当X=xX=xX=x时的概率P(X=x∣Y=ck)P(X=x|Y=c_k)P(X=x∣
- torch.nn中的22种loss函数简述
01_6
人工智能机器学习
loss.py中能看到所有的loss函数,本文会简单对它们进行介绍1.L1Loss计算输入和目标之间的L1(即绝对值)损失。这种损失函数会计算预测值和目标值之间差的绝对值的平均。2.NLLLoss(负对数似然损失)首先找到每个样本模型预测的概率分布中对应于真实标签的那个值,然后取这个值的负数,最后对所有样本的损失取平均。即loss(x,class)=−x[class]3.NLLLoss2d(二维输
- Top-K准确率代码实现
友人Chi
python机器学习开发语言
文章目录Top-K准确率Top-K准确率的代码实现多标签分类准确率的代码实现Top-K准确率Top-K准确率就是用来计算预测结果中概率最大的前K个结果包含正确标签的占比。换句话说,平常我们所说的准确率其实就是Top-1准确率。下面我们还是通过一个例子来进行说明。假如现在有一个用于手写体识别的分类器(10分类),你现在将一张正确标签为3的图片输入到分类器中且得到了如下所示的一个概率分布:logits
- 【统计学习方法】感知机
jyyym
ml苦手机器学习
一、前言感知机是FrankRosenblatt在1957年就职于康奈尔航空实验室时所发明的一种人工神经网络。它可以被视为一种最简单的前馈神经网络,是一种二元线性分类器。Seemoredetailsinwikipdia感知机.本篇blog将从统计学习方法三要素即模型、策略、算法三个方面介绍感知机,并给出相应代码实现。二、模型假设输入空间是x∈Rnx\in{R^n}x∈Rn,输出空间是y∈{−1,+1
- python随机数产生最全直接汇总
鹏鹏写代码
python工具篇pythonrandom
random.betavariate(alpha,beta)以beta分布的概率分布返回0~1之间的随机数返回值:介于0~1之间的随机数importrandomprint(random.betavariate(1,3))0.1443350519425653choice()~从非序列中返回一个随机元素ramdom.choice(seq)#seq表示需要随机抽取的序列返回值:从非空序列中返回一个随机元
- 理解Softmax函数的原理和实现
Ven%
深度学习基础动手自然语言处理人工智能深度学习机器学习python
Softmax函数是机器学习和深度学习中非常基础且重要的一个概念,特别是在处理分类问题时。它的作用是将一个向量中的元素值转换成概率分布,使得每个元素的值都在0到1之间,并且所有元素值的总和为1。原理Softmax函数的数学表达式定义如下:softmax(zi)=ezi∑jezj\text{softmax}(z_i)=\frac{e^{z_i}}{\sum_{j}e^{z_j}}softmax(zi
- 解惑深度学习中的困惑度Perplexity
Axlsss
深度学习统计知识深度学习人工智能数学建模
困惑度的定义困惑度(Perplexity)是衡量语言模型好坏的一个常用指标。语言模型(languagemodel)可以预测序列(比如一个句子)中每个时间步词元(比如一个句子中的逐个单词)的概率分布,继而计算一个序列的概率。一个好的语言模型应该有更高的概率生成一个好的序列,即生成的序列不应该让人感到很困惑,困惑度的核心思想是:序列生成的概率越大,其困惑度越小,因此可以使用困惑度这个指标来评估语言模型
- 高斯分布推导
章靓
概率论
GaussianDistribution基础概念:似然性:用于在已知某些观测所得到的结果时,对有关事物之性质的参数进行估值。最大似然估计:给定一个概率分布DDD,一直其概率密度函数为fDf_DfD,以及一个分布参数θ\thetaθ,我们可以从这个分布中抽出一个具有nnn个值的采样X1,X2,⋯ ,XnX_1,X_2,\cdots,X_nX1,X2,⋯,Xn,利用fDf_DfD计算出其似然函数:L(
- 赠书 | 李航老师的蓝皮书
茗创科技
赠书活动统计学习方法“统计机器学习方法是实现智能化目标的最有效的手段,统计机器学习是各种智能性处理研究领域中的核心技术,并且在这些领域的发展及应用中起着决定性的作用。”作者简介李航,日本京都大学电气电子工程系毕业,日本东京大学计算机科学博士。北京大学、南京大学客座教授,IEEE会士,ACM杰出科学家,CCF高级会员。研究方向包括信息检索,自然语言处理,统计机器学习,及数据挖掘。曾出版过三部学术专著
- 深入理解LDA主题模型及其在文本分析中的应用
小高要坚强
python信息可视化matplotlib算法分类
深入理解LDA主题模型及其在文本分析中的应用在自然语言处理领域,主题模型是一种强大的工具,能够自动发现文档集中的潜在主题。在大规模文本数据分析中,LatentDirichletAllocation(LDA)是最受欢迎的主题模型之一。LDA的核心目标是从文档集中提取不同的主题,并确定每篇文档属于这些主题的概率分布。本文将详细介绍LDA主题模型的原理、如何使用Python实现LDA,并演示如何将其应用
- 深度学习如何入门?
科学的N次方
深度学习
入门深度学习需要系统性的学习和实践经验积累,以下是一份详细的入门指南,包含了关键的学习步骤和资源:预备知识:•编程基础:熟悉Python编程语言,它是深度学习领域最常用的编程语言。确保掌握变量、条件语句、循环、函数等基本概念,并学习如何使用Python处理数据和文件操作。•数学基础:理解线性代数(矩阵运算、向量空间等)、微积分(导数、梯度求解等)、概率论与统计学(期望、方差、概率分布、最大似然估计
- Echarts绘制任意数据的正态分布图
tsunami_______
Vueecharts前端javascript
一、什么是正态分布正态分布,又称高斯分布或钟形曲线,是统计学中最为重要和常用的分布之一。正态分布是一种连续型的概率分布,其概率密度函数(ProbabilityDensityFunction,简称PDF)可以通过一个平均值(μ,mu)和标准差(σ,sigma)来完全描述。若随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为N(μ,σ2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准
- ChatGPT和LLM
小米人er
我的博客chatgpt
ChatGPT和LLM(大型语言模型)之间存在密切的关系。首先,LLM是一个更为抽象的概念,它包含了各种自然语言处理任务中使用的各种深度学习模型结构。这些模型通过建立深层神经网络,根据已有的大量文本数据进行文本自动生成。其核心思想是基于训练数据中的统计规律,将输入序列转化为概率分布,进而输出目标序列。这种技术广泛应用于各种自然语言处理任务,如机器翻译、语音识别、文本生成等。而ChatGPT则是基于
- Visual Studio+C#实现信道与信息率失真函数
deleteeee
visualstudioc#信息论算法失真函数编程经验分享信道
1.要求设计一款信道与信息率失真函数计算系统,要求如下:系统能够通过输入的转移概率矩阵计算对称以及非对称离散无记忆信道的信道容量系统能够通过输入的概率分布以及失真矩阵来计算与信息率失真函数有关的相关参数,例如Dmin,R(Dmin),Dmax,R(Dmax),并且能够给出相应的转移概率矩阵系统通过多个窗体组合,通过总菜单点击不同选项会进入到相应的计算中窗体中应该包括MenuStrip控件,通过控件
- 随机过程及应用学习笔记(三)几种重要的随机过程
苦瓜汤补钙
学习笔记
介绍独立过程和独立增量过程。重点介绍两种独立增量过程-—维纳过程和泊松过程。目录前言一、独立过程和独立增量过程1、独立过程(IndependentProcess)2、独立增量过程(IndependentIncrementProcess)二、正态过程(高斯过程)1、正态过程的定义编辑2、正态过程的概率分布三、维纳过程(Brown运动)1、定义2、概率分布及数学特征3、性质四、泊松过程1、定义2、概率
- 离散型随机变量的分布列的教学
7300T
离散型随机变量的分布列在概率教学中的地位离散型随机变量的分布列是计算离散型随机变量的期望和方差的基础,同时也是表示二项分布、几何分布等重要概率分布的基础工具。因此,分布列的教学是重中之重。多种离散型随机变量的分布列借助于实例,用分布列描述各种概率分布,不但加强了分布列教学,还可以把分布列与各种概率模型联系起来。(1)由等可能事件引起的随机变量的分布列一个袋子中有六个同样大小的小球,编号为1、2、3
- Transformers中的Beam Search高效实现
zenRRan
算法python深度学习机器学习搜索引擎
来自:纸鱼AI目前Github上的大部分实现均针对于单个样本的beamsearch,而本文主要介绍了针对单个样本和批量样本的beamsearch实现。本文代码可以点击“查看原文”找到BeamSearch的原理设输入序列为,输出序列为,我们需要建模如下概率分布:(公式向右滑动)在执行解码时,我们有几种选词方案,第一种则是穷举所有可能序列,这种成本过大无法承受。如果每一步都选择概率最大的词,这种解码方
- 联合概率分布-概率质量函数归一化性质-连续型变量概率分布
云博士的AI课堂
AI中的数学概率论概率分布概率统计AI中的数学联合概率分布
更多AI技术入门知识与工具使用请看下面链接:https://student-api.iyincaishijiao.com/t/iNSVmUE8/
- 概率分布-离散型概率分布
云博士的AI课堂
AI中的数学人工智能概率论概率统计概率分布AI中的数学
更多AI技术入门知识与工具使用请看下面链接:https://student-api.iyincaishijiao.com/t/iNSVmUE8/
- matlab正态分布拟合数据画图
红老鼠
matlab
1clearclccloseall%生成风速数据wind_speed_data=randn(1000,1)*5+10;%生成均值为10,标准差为5的正态分布数据%计算概率分布直方图hist_bins=linspace(min(wind_speed_data),max(wind_speed_data),20);hist_values=hist(wind_speed_data,hist_bins)/n
- 用Excel进行数据分析:数据分析工具在哪里?
东方草堂的数据
【工具】Excel
用Excel进行数据分析:数据分析工具在哪里?Excel里面自带的数据分析功能也可以完成SAS、SPSS这些专业统计软件有的数据分析工作,这其中包括:描述性统计、相关系数、概率分布、均值推断、线性、非线性回归、多元回归分析、时间序列等内容。接下来的用Excel进行数据分析系列教程,都是基于Excel2013,今天我们讲讲Excel2013的数据分析工具在哪里?分析工具库是在安装MicrosoftO
- 交叉熵损失函数(Cross-Entropy Loss)的基本概念与程序代码
小桥流水---人工智能
人工智能机器学习算法人工智能深度学习
交叉熵损失函数(Cross-EntropyLoss)是机器学习和深度学习中常用的损失函数之一,用于分类问题。其基本概念如下:1.基本解释:交叉熵损失函数衡量了模型预测的概率分布与真实概率分布之间的差异。在分类问题中,通常有一个真实的类别标签,而模型会输出一个概率分布,表示样本属于各个类别的概率。交叉熵损失函数通过比较这两个分布来计算损失,从而指导模型的优化。具体来说,对于二分类问题,真实标签通常表
- 统计学习方法(李航)--第二章 感知机(比较基础)
人間煙火Just
感知机是二分类的线性分类模型,属于判别模型,包括原始形式和对偶形式。(一)感知机模型公式为:f是输出,x是输入,w和b是参数,sign是符号函数(大于0为1,小于0为-1)几何解释:对于特征空间Rn中的一个超平面S,w是S的法向量,b是截距,将超平面空间划分为两个部分,完成2分类任务。(二)学习策略1.数据集的线性可分性:若存在wx+b的超平面可以将数据集完全分割,则称为线性可分。2.学习策略(以
- 机器学习:Softmax介绍及代码实现
是Dream呀
机器学习笔记神经网络机器学习人工智能python
Softmax原理Softmax函数用于将分类结果归一化,形成一个概率分布。作用类似于二分类中的Sigmoid函数。对于一个k维向量z,我们想把这个结果转换为一个k个类别的概率分布p(z)。softmax可以用于实现上述结果,具体计算公式为:对于k维向量z来说,其中zi∈Rzi∈R,我们使用指数函数变换可以将元素的取值范围变换到(0,+∞)(0,+∞),之后我们再所有元素求和将结果缩放到[0,1]
- 【2018-10-02】条件随机场
BigBigFlower
条件随机场:给定随机变量x条件下,随机变量y的马尔科夫随机场。设X和Y是随机变量,P(Y|X)是在给定X的条件下Y的条件概率分布,若随机变量Y构成一个由无向图G=(V,E)表示的马尔科夫随机场,即满足马尔科夫性:w~v(与v连接的所有w)线性链条件随机场线性链条件随机场的参数形式:tk边上的特征函数,sl节点上的特征函数条件随机场的概率计算问题前向-后向算法定义前向向量:递推公式:定义后向向量:前
- [Python] KDE图[密度图(Kernel Density Estimate,核密度估计)]介绍和使用场景(案例)
老狼IT工作室
pythonpythonKDE密度分布图
KDE图是什么?核密度估计(KernelDensityEstimate,KDE)是一种非参数统计方法,用于估计未知随机变量的概率分布。它通过在每个数据点附近放置一个核函数,并将这些核函数加总起来,得到对概率分布的估计。KDE的主要思想是通过在每个数据点附近放置一个核函数来估计概率分布。核函数可以是各种形式,常用的有高斯核、均匀核等。核函数在数据点附近产生一个非负的函数值,表示该点附近的概率密度。然
- sql统计相同项个数并按名次显示
朱辉辉33
javaoracle
现在有如下这样一个表:
A表
ID Name time
------------------------------
0001 aaa 2006-11-18
0002 ccc 2006-11-18
0003 eee 2006-11-18
0004 aaa 2006-11-18
0005 eee 2006-11-18
0004 aaa 2006-11-18
0002 ccc 20
- Android+Jquery Mobile学习系列-目录
白糖_
JQuery Mobile
最近在研究学习基于Android的移动应用开发,准备给家里人做一个应用程序用用。向公司手机移动团队咨询了下,觉得使用Android的WebView上手最快,因为WebView等于是一个内置浏览器,可以基于html页面开发,不用去学习Android自带的七七八八的控件。然后加上Jquery mobile的样式渲染和事件等,就能非常方便的做动态应用了。
从现在起,往后一段时间,我打算
- 如何给线程池命名
daysinsun
线程池
在系统运行后,在线程快照里总是看到线程池的名字为pool-xx,这样导致很不好定位,怎么给线程池一个有意义的名字呢。参照ThreadPoolExecutor类的ThreadFactory,自己实现ThreadFactory接口,重写newThread方法即可。参考代码如下:
public class Named
- IE 中"HTML Parsing Error:Unable to modify the parent container element before the
周凡杨
html解析errorreadyState
错误: IE 中"HTML Parsing Error:Unable to modify the parent container element before the child element is closed"
现象: 同事之间几个IE 测试情况下,有的报这个错,有的不报。经查询资料后,可归纳以下原因。
- java上传
g21121
java
我们在做web项目中通常会遇到上传文件的情况,用struts等框架的会直接用的自带的标签和组件,今天说的是利用servlet来完成上传。
我们这里利用到commons-fileupload组件,相关jar包可以取apache官网下载:http://commons.apache.org/
下面是servlet的代码:
//定义一个磁盘文件工厂
DiskFileItemFactory fact
- SpringMVC配置学习
510888780
springmvc
spring MVC配置详解
现在主流的Web MVC框架除了Struts这个主力 外,其次就是Spring MVC了,因此这也是作为一名程序员需要掌握的主流框架,框架选择多了,应对多变的需求和业务时,可实行的方案自然就多了。不过要想灵活运用Spring MVC来应对大多数的Web开发,就必须要掌握它的配置及原理。
一、Spring MVC环境搭建:(Spring 2.5.6 + Hi
- spring mvc-jfreeChart 柱图(1)
布衣凌宇
jfreechart
第一步:下载jfreeChart包,注意是jfreeChart文件lib目录下的,jcommon-1.0.23.jar和jfreechart-1.0.19.jar两个包即可;
第二步:配置web.xml;
web.xml代码如下
<servlet>
<servlet-name>jfreechart</servlet-nam
- 我的spring学习笔记13-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java P
- java 线程池使用 Runnable&Callable&Future
antlove
javathreadRunnablecallablefuture
1. 创建线程池
ExecutorService executorService = Executors.newCachedThreadPool();
2. 执行一次线程,调用Runnable接口实现
Future<?> future = executorService.submit(new DefaultRunnable());
System.out.prin
- XML语法元素结构的总结
百合不是茶
xml树结构
1.XML介绍1969年 gml (主要目的是要在不同的机器进行通信的数据规范)1985年 sgml standard generralized markup language1993年 html(www网)1998年 xml extensible markup language
- 改变eclipse编码格式
bijian1013
eclipse编码格式
1.改变整个工作空间的编码格式
改变整个工作空间的编码格式,这样以后新建的文件也是新设置的编码格式。
Eclipse->window->preferences->General->workspace-
- javascript中return的设计缺陷
bijian1013
JavaScriptAngularJS
代码1:
<script>
var gisService = (function(window)
{
return
{
name:function ()
{
alert(1);
}
};
})(this);
gisService.name();
&l
- 【持久化框架MyBatis3八】Spring集成MyBatis3
bit1129
Mybatis3
pom.xml配置
Maven的pom中主要包括:
MyBatis
MyBatis-Spring
Spring
MySQL-Connector-Java
Druid
applicationContext.xml配置
<?xml version="1.0" encoding="UTF-8"?>
&
- java web项目启动时自动加载自定义properties文件
bitray
javaWeb监听器相对路径
创建一个类
public class ContextInitListener implements ServletContextListener
使得该类成为一个监听器。用于监听整个容器生命周期的,主要是初始化和销毁的。
类创建后要在web.xml配置文件中增加一个简单的监听器配置,即刚才我们定义的类。
<listener>
<des
- 用nginx区分文件大小做出不同响应
ronin47
昨晚和前21v的同事聊天,说到我离职后一些技术上的更新。其中有个给某大客户(游戏下载类)的特殊需求设计,因为文件大小差距很大——估计是大版本和补丁的区别——又走的是同一个域名,而squid在响应比较大的文件时,尤其是初次下载的时候,性能比较差,所以拆成两组服务器,squid服务于较小的文件,通过pull方式从peer层获取,nginx服务于较大的文件,通过push方式由peer层分发同步。外部发布
- java-67-扑克牌的顺子.从扑克牌中随机抽5张牌,判断是不是一个顺子,即这5张牌是不是连续的.2-10为数字本身,A为1,J为11,Q为12,K为13,而大
bylijinnan
java
package com.ljn.base;
import java.util.Arrays;
import java.util.Random;
public class ContinuousPoker {
/**
* Q67 扑克牌的顺子 从扑克牌中随机抽5张牌,判断是不是一个顺子,即这5张牌是不是连续的。
* 2-10为数字本身,A为1,J为1
- 翟鸿燊老师语录
ccii
翟鸿燊
一、国学应用智慧TAT之亮剑精神A
1. 角色就是人格
就像你一回家的时候,你一进屋里面,你已经是儿子,是姑娘啦,给老爸老妈倒怀水吧,你还觉得你是老总呢?还拿派呢?就像今天一样,你们往这儿一坐,你们之间是什么,同学,是朋友。
还有下属最忌讳的就是领导向他询问情况的时候,什么我不知道,我不清楚,该你知道的你凭什么不知道
- [光速与宇宙]进行光速飞行的一些问题
comsci
问题
在人类整体进入宇宙时代,即将开展深空宇宙探索之前,我有几个猜想想告诉大家
仅仅是猜想。。。未经官方证实
1:要在宇宙中进行光速飞行,必须首先获得宇宙中的航行通行证,而这个航行通行证并不是我们平常认为的那种带钢印的证书,是什么呢? 下面我来告诉
- oracle undo解析
cwqcwqmax9
oracle
oracle undo解析2012-09-24 09:02:01 我来说两句 作者:虫师收藏 我要投稿
Undo是干嘛用的? &nb
- java中各种集合的详细介绍
dashuaifu
java集合
一,java中各种集合的关系图 Collection 接口的接口 对象的集合 ├ List 子接口 &n
- 卸载windows服务的方法
dcj3sjt126com
windowsservice
卸载Windows服务的方法
在Windows中,有一类程序称为服务,在操作系统内核加载完成后就开始加载。这里程序往往运行在操作系统的底层,因此资源占用比较大、执行效率比较高,比较有代表性的就是杀毒软件。但是一旦因为特殊原因不能正确卸载这些程序了,其加载在Windows内的服务就不容易删除了。即便是删除注册表中的相 应项目,虽然不启动了,但是系统中仍然存在此项服务,只是没有加载而已。如果安装其他
- Warning: The Copy Bundle Resources build phase contains this target's Info.plist
dcj3sjt126com
iosxcode
http://developer.apple.com/iphone/library/qa/qa2009/qa1649.html
Excerpt:
You are getting this warning because you probably added your Info.plist file to your Copy Bundle
- 2014之C++学习笔记(一)
Etwo
C++EtwoEtwoiterator迭代器
已经有很长一段时间没有写博客了,可能大家已经淡忘了Etwo这个人的存在,这一年多以来,本人从事了AS的相关开发工作,但最近一段时间,AS在天朝的没落,相信有很多码农也都清楚,现在的页游基本上达到饱和,手机上的游戏基本被unity3D与cocos占据,AS基本没有容身之处。so。。。最近我并不打算直接转型
- js跨越获取数据问题记录
haifengwuch
jsonpjsonAjax
js的跨越问题,普通的ajax无法获取服务器返回的值。
第一种解决方案,通过getson,后台配合方式,实现。
Java后台代码:
protected void doPost(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {
String ca
- 蓝色jQuery导航条
ini
JavaScripthtmljqueryWebhtml5
效果体验:http://keleyi.com/keleyi/phtml/jqtexiao/39.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>jQuery鼠标悬停上下滑动导航条 - 柯乐义<
- linux部署jdk,tomcat,mysql
kerryg
jdktomcatlinuxmysql
1、安装java环境jdk:
一般系统都会默认自带的JDK,但是不太好用,都会卸载了,然后重新安装。
1.1)、卸载:
(rpm -qa :查询已经安装哪些软件包;
rmp -q 软件包:查询指定包是否已
- DOMContentLoaded VS onload VS onreadystatechange
mutongwu
jqueryjs
1. DOMContentLoaded 在页面html、script、style加载完毕即可触发,无需等待所有资源(image/iframe)加载完毕。(IE9+)
2. onload是最早支持的事件,要求所有资源加载完毕触发。
3. onreadystatechange 开始在IE引入,后来其它浏览器也有一定的实现。涉及以下 document , applet, embed, fra
- sql批量插入数据
qifeifei
批量插入
hi,
自己在做工程的时候,遇到批量插入数据的数据修复场景。我的思路是在插入前准备一个临时表,临时表的整理就看当时的选择条件了,临时表就是要插入的数据集,最后再批量插入到数据库中。
WITH tempT AS (
SELECT
item_id AS combo_id,
item_id,
now() AS create_date
FROM
a
- log4j打印日志文件 如何实现相对路径到 项目工程下
thinkfreer
Weblog4j应用服务器日志
最近为了实现统计一个网站的访问量,记录用户的登录信息,以方便站长实时了解自己网站的访问情况,选择了Apache 的log4j,但是在选择相对路径那块 卡主了,X度了好多方法(其实大多都是一样的内用,还一个字都不差的),都没有能解决问题,无奈搞了2天终于解决了,与大家分享一下
需求:
用户登录该网站时,把用户的登录名,ip,时间。统计到一个txt文档里,以方便其他系统调用此txt。项目名
- linux下mysql-5.6.23.tar.gz安装与配置
笑我痴狂
mysqllinuxunix
1.卸载系统默认的mysql
[root@localhost ~]# rpm -qa | grep mysql
mysql-libs-5.1.66-2.el6_3.x86_64
mysql-devel-5.1.66-2.el6_3.x86_64
mysql-5.1.66-2.el6_3.x86_64
[root@localhost ~]# rpm -e mysql-libs-5.1