Elastic Certified Engineer 德国博士题目

elasticsearch认证工程师考试必备练习题,难度较考试大一些

  • 题库提供者:


    大佬本尊
  • 建议先看题目,自己做一遍。部分解答和题目需求一致但数据可能不同,如解答逻辑有问题,望批评指正

1. 安装配置集群

Exercise1

  1. 定义集群名字
  2. 定义三个节点名字
  3. 所有节点配置为eligible master
  4. 将节点网络绑定到ip和端口
  5. 配置cluster discovery使node2,node3使用node1作为seed host
  6. 配置集群避免脑裂
  7. 配置node1为data但不是ingest
  8. 配置node2,node3为data和ingest
  9. 配置node1禁止swapping
  10. 配置jvm min/max 都为1GB
  11. 修改log目录
  12. 修改transport-related events的日志级别为debug
  13. 配置节点禁止以通配符删除索引

解:

http.port: 9200
transport.port: 9300

cluster.initial_master_node: ["node1","node2","node3"]

node.master: true 
node.data: false 
node.ingest: false 
node.ml: false 
cluster.remote.connect: false

swapoff -a
vim /etc/security/limits.conf
* hard memlock unlimited
* soft memlock unlimited
bootstrap.memory_lock:true

//配置该节点会与哪些候选地址进行通信以加入集群
discovery.seed_hosts: ["node1"]
//集群初始化的提供的master候选地址,第一次启动时将从该列表中获取master
cluster.initial_master_nodes: ["node1"] 

logger.org.elasticsearch.transport: debug

action.destructive_requires_name: true

PUT /_cluster/settings
{
  "transient": {
    "logger.org.elasticsearch.transport": "debug"
  }
}

Exercise2

  1. 运行集群带有一个kibana实例
  2. 集群内没有hamlet索引
  3. 启用集群的xpack security
  4. 设置elastic和kibana用户的密码
  5. 使用elastic用户登录kibana
  6. 构造hamlet索引并bulk进数据
  7. 创建francisco_role在native realm,有cluster的monitor权限,index hamlet的所有权限
  8. 将用户francisco_role赋予给新建用户francisco
  9. 验证用户francisco
  10. 创建nardo_role在native realm,有cluster的monitor权限,index read-only权限,只能看到BERNARDO=speaker的文档,只能看到text_entry字段
  11. 将用户nardo_role赋予给新建用户nardo
  12. 验证用户nardo
  13. 修改用户nardo密码并验证

解:

开启security,开启ssl认证,生成证书,分发节点,添加密码到keystore:

xpack.security.enabled: true
xpack.security.transport.ssl.enabled: true
xpack.security.transport.ssl.verification_mode: certificate
xpack.security.transport.ssl.keystore.path: certs/elastic-certificates.p12
xpack.security.transport.ssl.truststore.path: certs/elastic-certificates.p12

elasticsearch-users添加的本地用户只有本地才有效,存在本地的config文件夹下
7以前版本需要申请证书注册白金版本试用,开启field级别security
7以后版本/_license/start_trial?acknowledge=true开启试用

{
  "role1": {
    "cluster": [
      "monitor"
    ],
    "indices": [
      {
        "names": [
          "t1"
        ],
        "privileges": [
          "all"
        ],
        "allow_restricted_indices": false
      }
    ]
  }
}

{
  "role2": {
    "cluster": [
      "monitor"
    ],
    "indices": [
      {
        "names": [
          "t1"
        ],
        "privileges": [
          "read"
        ],
        "field_security": {
          "grant": [
            "f1"
          ]
        },
        "query": "{\"match\":{\"f2\":\"a\"}}",
        "allow_restricted_indices": false
      }
    ]
  }
}
    
POST /_security/user/user1/_password
{
  "password" : "123456"
}

2. 管理集群

Exercise1

  1. 创建2分片1副本索引
  2. 查看分配状态和分片分布
  3. 将2个主分片都分配到node1
  4. 将2个主分片设置都不分配到node3
  5. 去除相关的分配策略
  6. 设置名为zone的attribute,node1,node2的zone为z1,node3为z2
  7. 设置集群awareness基于这两个zone,并persist这个配置在集群重启后仍生效
  8. 设置集群hot/warm策略,node1为hot,node2,3为warm,分配索引t1所有分片到warm节点
  9. 移除t1的hot/warm策略

解:

_cat/shards/test1?v
//允许集群分片分配:
cluster.routing.allocation.enable:all/primaries/new_primaries/none
//允许分片重新平衡:
cluster.routing.rebalance.enable:all/primaries/replicas/none
//分配类型:
require/include/exclude  配合修改副本数
PUT test1/_settings
{
  "index.routing.allocation.require._name": "sinan02"
}
PUT test1/_settings
{
  "index.routing.allocation.require._name": null
}

node.attr.zone: zone2
node.attr.type: warm

PUT _cluster/settings
{
  "persistent": {//持久的  transient:暂时的
    "cluster.routing.allocation.awareness.attributes": "zone",//副本分配到zone值不同的节点
    "cluster.routing.allocation.awareness.force.zone.values": "zone1,zone2"//强制感知,不满足不分配副本
    //设置为null取消感知
  }
}
GET _cat/shards
GET _cat/nodeattrs?v

Exercise2

  1. 配置单节点集群节点node1存储快照到指定目录
  2. 创建hamlet_backup shared file system repository到指定目录
  3. 创建hamlet的snapshot名字为hamlet_snapshot_1存储到hamlet_backup
  4. 删除hamlet再通过hamlet_snapshot_1恢复
  5. 再启动单节点集群节点node2,同样构造索引test1_pirate
  6. 配置cross跨集群搜索:remote cluster name为original,seed为node1监听transport port,跨集群配置为persists
  7. 运行跨集群查询

解:

path.repo: ["/home/caster/repo"]
PUT /_snapshot/hamlet_backup
{
  "type": "fs",
  "settings": {
    "location": "/home/caster/repo",
    "compress": true
  }
}
PUT /_snapshot/hamlet_backup/hamlet_snapshot_1?wait_for_completion=true
{
  "indices": "hamlet",
  "ignore_unavailable": true,// 快照创建期间不存在的索引被忽略
  "include_global_state": false//防止集群全局状态作为快照一部分存储起来
}
GET /_snapshot/hamlet_backup/_all
DELETE hamlet
POST /_snapshot/hamlet_backup/hamlet_snapshot_1/_restore

PUT _cluster/settings
{
  "persistent": {
    "cluster": {
      "remote": {
        "cluster_two": {
          "seeds": [
            "sinan03:9300"
          ]
        },
        "cluster_one": {
          "seeds": [
            "sinan04:9300"
          ]
        }
      }
    }
  }
}
GET /cluster_one:test1/_search

3. 加载数据

Exercise1

  1. 创建索引hamlet-raw一分片三副本
  2. 插入一个文档id=1,默认type,一个字段 line值为"To be, or not to be: that is the question"
  3. 通过id=1更新文档添加字段line_number值为3.1.64
  4. 插入一个文档使用自动生成的id,默认type,字段text_entry值为" tis nobler in the mind to suffer",字段line_number值为3.1.66
  5. 更新上一个文档通过设置line_number值为3.1.65
  6. 通过一个请求,更新全部文档添加一个字段speaker值为hamlet
  7. 更新id=1的文档将字段line重命名为text_entry
  8. 创建名为set_is_hamlet的脚本存到cluster state,脚本为每个文档添加一个字段is_hamlet,如果文档的speaker值为HAMLET就将is_hamlet值为true,否则设置为false,运行脚本更新hamlet所有文档(_update_by_query)
  9. 通过_delete_by_query删除hamlet中speaker为KING CLAUDIUS,LAERTES的文档

解:

PUT hamlet
{
  "settings": {
    "number_of_replicas": 0,
    "number_of_shards": 1
  }
}

POST hamlet/_doc/1
{
  "line":"To be, or not to be: that is the question"
}

POST hamlet/_update/1
{
  "doc": {
    "line_number": "3.1.64"
  }
}

POST hamlet/_update/1
{
  "script" : "ctx._source.line_number = '3.1.64'"
}

POST hamlet/_doc
{
  "text_entry":"tis nobler in the mind to suffer",
  "line_number":"3.1.66"
}

POST hamlet/_update_by_query
{
  "script": {
    "source": "ctx._source.line_number='3.1.65'",
    "lang": "painless"
  },
  "query": {
    "match": {
      "line_number": "3.1.66"
    }
  }
}

PUT _ingest/pipeline/speaker-Hamlet
{
  "description": "speaker-Hamlet",
  "processors": [
    {
      "set": {
        "field": "speaker",
        "value": "Hamlet"
      }
    }
  ]
}

POST hamlet/_update_by_query?pipeline=speaker-Hamlet

POST hamlet/_update_by_query
{
  "script": {
    "source": "ctx._source.speaker = 'hamlet'",
    "lang": "painless"
  },
  "query": {
    "match_all": {}
  }
}

PUT _ingest/pipeline/p1
{
  "processors": [
    {
      "rename": {
        "field": "line",
        "target_field": "text_entry"
      }
    }
  ]
}

POST hamlet/_update_by_query?pipeline=p1
{
  "query": {
    "term": {
      "_id": "1"
    }
  }
}

POST _scripts/s1
{
  "script": {
    "source": "if (ctx._source.speaker=='hamlet') { ctx._source.is_hamlet='true' } else{ctx._source.is_hamlet='false'}",
    "lang": "painless"
  }
}

GET _scripts/s1

POST hamlet/_update_by_query
{
  "script": {
    "id": "s1"
  },
  "query": {
    "match_all": {}
  }
}

POST hamlet/_delete_by_query
{
  "query": {
    "bool": {
      "should": [
        {
          "term": {
            "speaker.keyword": {
              "value": "KING CLAUDIUS"
            }
          }
        },
        {
          "term": {
            "speaker.keyword": {
              "value": "LAERTES"
            }
          }
        }
      ]
    }
  }
}

Exercise2

  1. 创建一个名为hamlet_template匹配以hamlet_ or hamlet-开头的索引,设置1主0副
  2. 创建hamlet2和hamlet_test验证只有hamlet_test使用了模板
  3. 更新模板hamlet_template设置type:_doc的mapping:字为speaker,line_number, and text_entry(english分词器)
  4. 验证模板更新没有应用到已创建的索引上
  5. 删除hamlet2和hamlet_test
  6. 创建hamlet-1并添加数据验证模板应用
  7. 更新模板hamlet_template拒绝未定义的字段写入
  8. 验证hamlet-1不能写入未定义的字段
    dynamic mapping 和 dynamic templates:
  9. 更新模板hamlet_template允许动态mapping:number_开头的字段设置为integer类型,string字段设置为text类型
  10. 创建hamlet-2并添加文档验证

解:

PUT _template/hamlet_template
{
  "index_patterns": [
    "hamlet_*",
    "hamlet-*"
  ],
  "settings": {
    "number_of_shards": 1,
    "number_of_replicas": 0
  }
}
PUT hamlet_1
PUT hamlettest
GET hamlet_1,hamlettest

PUT _template/hamlet_template
{
  "index_patterns": [
    "hamlet_*",
    "hamlet-*"
  ],
  "settings": {
    "number_of_shards": 1,
    "number_of_replicas": 0
  },
  "mappings": {
    "properties": {
      "speaker": {
        "type": "keyword"
      },
      "line_number": {
        "type": "keyword"
      },
      "text_entry": {
        "type": "text",
        "analyzer": "english"
      }
    }
  }
}
GET hamlet_1,hamlettest
DELETE hamlet_1,hamlettest

POST _bulk
{"index":{"_index":"hamlet-1","_id":0}}
{"line_number":"1.1.1","speaker":"BERNARDO","text_entry":"Whos there?"}
GET hamlet-1

PUT _template/hamlet_template
{
  "index_patterns": [
    "hamlet_*",
    "hamlet-*"
  ],
  "settings": {
    "number_of_shards": 1,
    "number_of_replicas": 0
  },
  "mappings": {
    "dynamic": "strict",
    "properties": {
      "speaker": {
        "type": "keyword"
      },
      "line_number": {
        "type": "keyword"
      },
      "text_entry": {
        "type": "text",
        "analyzer": "english"
      }
    }
  }
}
DELETE hamlet-1

POST _bulk
{"index":{"_index":"hamlet-1","_id":0}}
{"line_number":"1.1.1","speaker":"BERNARDO","text_entry":"Whos there?"}
GET hamlet-1

POST _bulk
{"index":{"_index":"hamlet-1","_id":1}}
{"line_number":"1.1.1","speaker":"BERNARDO","text_entry":"Whos there?","zxc":"a"}

POST hamlet-2/_doc/4
{
  "text_entry": "With turbulent and dangerous lunacy?",
  "line_number": "3.1.4",
  "number_act": "3",
  "speaker": "KING CLAUDIUS"
}

PUT _template/hamlet_template
{
  "index_patterns": [
    "hamlet_*",
    "hamlet-*"
  ],
  "settings": {
    "number_of_shards": 1,
    "number_of_replicas": 0
  },
  "mappings": {
    "dynamic_templates": [//顺序优先生效
      {
        "my": {
          //"match_mapping_type": "string",
          "match": "number_*",
          "mapping": {
            "type": "integer"
          }
        }
      },
      {
        "strings": {
          "match_mapping_type": "string",
          "mapping": {
            "type": "text"
          }
        }
      }
    ]
  }
}
POST hamlet-2/_doc/4
{
 "text_entry": "With turbulent and dangerous lunacy?",
 "line_number": "3.1.4",
 "number_act":3,
 "speaker": "KING CLAUDIUS"
}
GET hamlet-2

Exercise3

  1. 创建hamlet-1和hamlet-2,2分片1副本,加载数据
  2. 设置别名hamlet指向两个索引,检查hamlet文档数是否为总和
  3. 设置hamlet-1为hamlet的写索引
  4. 添加文档到hamlet,id为8,type为_doc,text_entry字段值为With turbulent and dangerous lunacy?,line_number为3.1.4,speaker为KING CLAUDIUS
  5. 创建control_reindex_batch脚本存储cluster state,脚本检查文档是否有reindexBatch字段,有则将其值增加parameter的increment参数数值,没有则添加此字段设置值为1
  6. 创建hamlet-new为2主0副,将hamlet别名reindex到hamlet-new,使用control_reindex_batch脚本并将increment参数设置为1,reindex using two parallel slices
  7. 将hamlet别名指向new删掉1,2
  8. 创建管道split_act_scene_line:将line_number以 . 分割为三部分,分别存入number_act,number_scene,number_line
  9. 用simulate测试管道,doc: {"line_number": "1.2.3"}
  10. 用此管道更新hamlet-new的全部文档

解:

POST /_aliases
{
  "actions": [
    {
      "add": {
        "indices": [
          "hamlet-1",
          "hamlet-2"
        ],
        "alias": "hamlet"
      }
    }
  ]
}
POST hamlet/_count
POST /_aliases
{
  "actions": [
    {
      "add": {
        "index": "hamlet-1",
        "alias": "hamlet",
        "is_write_index": true
      }
    },
    {
      "add": {
        "index": "hamlet-2",
        "alias": "hamlet"
      }
    }
  ]
}
POST hamlet/_doc/8
{
  "text_entry": "With turbulent and dangerous lunacy?",
  "line_number": "3.1.4",
  "speaker": "KING CLAUDIUS"
}

POST _scripts/control_reindex_batch
{
  "script": {
    "source": """
    if (ctx._source['reindexBatch']!=null) {
      ctx._source['reindexBatch']+=params.increment 
    } else{
      ctx._source['reindexBatch']=1
    }""",
    "lang": "painless"
  }
}
POST _reindex?slices=2
{
  "source": {
    "index": "hamlet"
  },
  "dest": {
    "index": "hamlet-new"
  },
  "script": {
    "id": "control_reindex_batch",
    "params": {
      "increment": 1
    }
  }
}
POST /_aliases
{
  "actions": [
    {
      "remove": {
        "index": "hamlet-1",
        "alias": "hamlet"
      }
    },
    {
      "remove": {
        "index": "hamlet-2",
        "alias": "hamlet"
      }
    },
    {
      "add": {
        "index": "hamlet-new",
        "alias": "hamlet"
      }
    }
  ]
}

PUT _ingest/pipeline/split_act_scene_line
{
  "processors": [
    {
      "split": {
        "field": "line_number",
        "separator": "\\."
      }
    },
    {
      "script": {
        "source": """
            ctx. number_act = ctx.line_number.0;//.size()获取数组长度
            ctx. number_scene = ctx.line_number.1;
            ctx. number_line = ctx.line_number.2;
        """
      }
    }
  ]
}
or:
{
  "set": {
    "field": "number_line",
    "value": "{{line_number.2}}"
  }
}

POST _ingest/pipeline/split_act_scene_line/_simulate
{
  "docs": [
    {
      "_source": {
        "line_number": "1.2.3"
      }
    }
  ]
}

POST hamlet-new/_update_by_query?pipeline=split_act_scene_line

4. 映射和文本分析

Exercise1

  1. 创建索引hamlet_1,1分片0副本,_doc type三个字段,speaker,line_number,text_entry, speaker,line_number为不分词string,
  2. 更新mapping禁用line_number的聚合//禁止更新重新创建
  3. 创建索引hamlet_2,1分片0副本,将1的mapping复制到2里面,将speaker设置为multi-field:tokens类型为默认的analysed string
  4. 将1 reindex到2
  5. 验证speaker.tokens的全文检索:
    解:
PUT hamlet_1
{
  "settings": {
    "number_of_replicas": 0,
    "number_of_shards": 1
  },
  "mappings": {
    "properties": {
      "speaker": {
        "type": "keyword"
      },
      "line_number": {
        "type": "keyword",
         "doc_values": false
      },
      "text_entry": {
        "type": "text"
      }
    }
  }
}
POST /hamlet_1/_search?size=0
{
  "aggs": {
    "t1": {
      "terms": {
        "field": "line_number"
      }
    }
  }
}

PUT hamlet_2
{
  "settings": {
    "number_of_replicas": 0,
    "number_of_shards": 1
  },
  "mappings": {
    "properties": {
      "speaker": {
        "type": "keyword",
        "fields": {
          "tokens": {
            "type": "text"
          }
        }
      },
      "line_number": {
        "type": "keyword",
        "doc_values": false
      },
      "text_entry": {
        "type": "text"
      }
    }
  }
}
POST _reindex
{
  "source": {
    "index": "hamlet_1"
  },
  "dest": {
    "index": "hamlet_2"
  }
}
GET hamlet_2/_search
{
  "query": {
    "match": {
      "speaker.tokens": "hamlet"
    }
  }
}

Exercise2

  1. 创建hamlet_1,加载关系型数据进行查询,发现返回结果不符
  2. 创建hamlet_2,mapping的relationship字段可以正确搜索(nested)
  3. 创建hamlet_3,1分片0副本,将hamlet_2的mapping复制到3,添加一个join字段character_or_line,character为parent,line为child
  4. reindex 2到3
  5. 创建脚本init_lines,参数为characterId,添加character_or_line到文档,设置character_or_line.name为line,设置character_or_line.parent=characterId参数的值
  6. 更新hamlet演员文档id=C0,添加character_or_line设置name为character
  7. 通过脚本init_lines更新索引中speaker为hamlet的文档设置characterId=C0指向hamlet演员父文档
  8. 运行has_parent查询验证

解:

PUT hamlet_1
{
  "settings": {
    "number_of_replicas": 0,
    "number_of_shards": 1
  }
}
PUT hamlet_1/_doc/_bulk
{"index":{"_index":"hamlet_1","_id":"C0"}}
{"name":"HAMLET","relationship":[{"name":"HORATIO","type":"friend"},{"name":"GERTRUDE","type":"mother"}]}
{"index":{"_index":"hamlet_1","_id":"C1"}}
{"name":"KING CLAUDIUS","relationship":[{"name":"HAMLET","type":"nephew"}]}

GET hamlet_1/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "relationship.name": "gertrude"
          }
        },
        {
          "match": {
            "relationship.type": "friend"
          }
        }
      ]
    }
  }
}

PUT hamlet_2
{
  "settings": {
    "number_of_replicas": 0,
    "number_of_shards": 1
  },
  "mappings": {
    "properties": {
      "name": {
        "type": "keyword"
      },
      "relationship": {
        "type": "nested",
        "properties": {
          "name": {
            "type": "keyword"
          },
          "type": {
            "type": "keyword"
          }
        }
      }
    }
  }
}
GET hamlet_2/_search
{
  "query": {
    "nested": {
      "path": "relationship",
      "query": {
        "bool": {
          "must": [
            {
              "match": {
                "relationship.name": "GERTRUDE"
              }
            },
            {
              "match": {
                "relationship.type": "mother"
              }
            }
          ]
        }
      }
    }
  }
}

PUT hamlet_3
{
  "settings": {
    "number_of_replicas": 0,
    "number_of_shards": 1
  },
  "mappings": {
    "properties": {
      "name": {
        "type": "keyword"
      },
      "relationship": {
        "type": "nested",
        "properties": {
          "name": {
            "type": "keyword"
          },
          "type": {
            "type": "keyword"
          }
        }
      },
      "character_or_line": { 
        "type": "join",
        "relations": {
          "character": "line" 
        }
      }
    }
  }
}
POST _reindex
{
  "source": {
    "index": "hamlet_2"
  },
  "dest": {
    "index": "hamlet_3"
  }
}

解:
PUT _scripts/init_lines
{
  "script": {
    "lang": "painless",
    "source": """
        HashMap map = new HashMap();
        map.name = 'line';
        map.parent = params.characterId;
        ctx._source.character_or_line = map;
    """
  }
}
PUT hamlet_3/_doc/C0?refresh
{
  "character_or_line": "character" 
}
POST hamlet_3/_update_by_query?routing=C0
{
  "script": {
    "id": "init_lines",
    "params": {
      "characterId": "C0"
    }
  },
  "query": {
    "match": {
      "speaker": "HAMLET"
    }
  }
}   
GET hamlet_3/_search
{
  "query": {
    "has_parent": {
      "parent_type": "character",
      "query": {
        "match": {
          "name": "HAMLET"
        }
      }
    }
  }
}

Exercise3

  1. 创建hamlet_1,定义mappings三个字段speaker,line_number,text_entry,text_entry为english分词器
  2. 创建hamlet_2添加自定义分词器shy_hamlet_analyzer,包含char filter将Hamlet替换为CENSORED;tokenizer 分离tokens on whitespaces and columns; token filter忽略字符数小于5的characters,hamlet2的mapping设置字段text_entry使用此分词器
  3. 使用分词器验证api验证shy_hamlet_analyzer
  4. 将hamlet_1 reindex到 hamlet_2,查询censored验证生效

解:

PUT hamlet_2
{
  "settings": {
    "number_of_replicas": 0,
    "number_of_shards": 1,
    "analysis": {
      "analyzer": {
        "shy_hamlet_analyzer": {
          "type": "custom",
          "tokenizer": "my_tokenizer",
          "char_filter": [
            "my_char_filter"
          ],
          "filter": [
            "my_filter"
          ]
        }
      },
      "tokenizer": {
        "my_tokenizer": {
          "type": "char_group",
          "tokenize_on_chars": [
            "whitespace",
            "\n"
          ]
        }
      },
      "char_filter": {
        "my_char_filter": {
          "type": "mapping",
          "mappings": [
            "Hamlet => CENSORED"
          ]
        }
      },
      "filter": {
        "my_filter": {
          "type": "length",
          "min": "5"
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "speaker": {
        "type": "keyword"
      },
      "line_number": {
        "type": "keyword"
      },
      "text_entry": {
        "type": "text",
        "analyzer": "shy_hamlet_analyzer"
      }
    }
  }
}
POST hamlet_2/_analyze
{
  "analyzer": "shy_hamlet_analyzer", 
  "text": "Though yet of Hamlet our dear brothers death"
}
POST hamlet_2/_search
{
  "query": {
    "match": {
      "text_entry": "CENSORED"
    }
  }
}

5. 查询和聚合

Exercise1

  1. 添加kibana日志和电商样例数据
  2. 插找日志索引message包含firefox的文档,firefox大小写不影响结果,因为standard分词器默认将全部tokens转为小写存储
  3. 分页查询message包含firefox的文档返回50条,然后再返回第二个50条
  4. 使用search after方式进行翻页查询
  5. 查询message包含firefox或者kibana的文档
  6. 查询message包含firefox和kibana的文档,查询message包含至少firefox,kibana和159.64.35.129中的两个
  7. 查询message包含firefox或者kibana的文档,高亮message字段并用{{ }}包裹
  8. 查询message包含短语HTTP/1.1 200 51的文档
  9. 查询message包含短语HTTP/1.1 200 51的文档,使用machine.os desc排序结果,同时使用timestamp asc排序
  10. 查询电商索引day_of_week包含Monday的文档,使用products.base_price desc排序,使用数组中的最小值进行排序

解:

POST kibana_sample_data_logs/_search
{
  "query": {
    "match": {
      "message": "firefox"
    }
  }
}

POST kibana_sample_data_logs/_search
{
  "from": 0,//设置为50返回第二页
  "size": 50, 
  "query": {
    "match": {
      "message": "firefox"
    }
  }
}

POST kibana_sample_data_logs/_search
{
  "size": 5,
  "query": {
    "match": {
      "message": "firefox"
    }
  },
  "sort": [
    {
      "_id": "asc"
    }
  ]
}

POST kibana_sample_data_logs/_search
{
  "size": 5,
  "query": {
    "match": {
      "message": "firefox"
    }
  },
  "search_after": [
    "zmHi7HQBoeWdfd48WTl-"//使用第一次返回的最后一个_id进行查询
  ],
  "sort": [
    {
      "_id": "asc"
    }
  ]
}

POST kibana_sample_data_logs/_search
{
  "query": {
    "match": {
      "message": "firefox kibana"
    }
  }
}

POST kibana_sample_data_logs/_search
{
  "query": {
    "match": {
      "message": {
        "query": "firefox kibana",
        "operator": "and"
      }
    }
  }
}

POST kibana_sample_data_logs/_search
{
  "query": {
    "match": {
      "message": {
        "query": "firefox kibana 159.64.35.129",
        "operator": "or",
        "minimum_should_match": 2
      }
    }
  }
}

POST kibana_sample_data_logs/_search
{
  "query": {
    "match": {
      "message": "firefox kibana"
    }
  },
  "highlight": {
    "fields": {
      "message": {
        "pre_tags": ["{{"],
        "post_tags": ["}}"]
      }
    }
  }
}

POST kibana_sample_data_logs/_search
{
  "query": {
    "match_phrase": {
      "message": "HTTP/1.1 200 51"
    }
  }
}

POST kibana_sample_data_logs/_search
{
  "query": {
    "match_phrase": {
      "message": "HTTP/1.1 200 51"
    }
  },
  "sort": [
    {
      "machine.os.keyword": {
        "order": "desc"
      },
      "timestamp": {
        "order": "asc"
      }
    }
  ]
}

POST kibana_sample_data_ecommerce/_search
{
  "query": {
    "match": {
      "day_of_week": "Monday"
    }
  },
  "sort": [
    {
      "products.base_price": {
        "order": "desc",
        "mode": "min"
      }
    }
  ]
}

Exercise2

  1. 过滤日志索引response字段≥400且<500,同时过滤referer字段为http://twitter.com/success/guion-bluford
  2. 过滤文档referer字段以http://twitter.com/success开头,过滤文档request字段以/people开头
  3. 过滤文档memory有值,过滤文档memory无值
  4. 查询agent包含windows,url包含name:john,phpmemory不空的文档
  5. 查询response字段≥400或者tags包含error的文档
  6. 查询tags不包含warning,error,info的文档
  7. 过滤timestamp字段包含日期在一周前到今天的文档
  8. 查询kibana_sample_data_flights索引,过滤文档OriginCityName或者DestCityName字段匹配Sydney,但允许不精准匹配,最大允许Levenshtein Edit Distance设置为2。测试Sydney,Sidney,Sidnei匹配到相同的结果

解:

POST kibana_sample_data_logs/_search
{
  "query": {
    "bool": {
      "filter": [
        {
          "range": {
            "response": {
              "gte": 400,
              "lt": 500
            }
          }
        },
        {
          "term": {
            "referer": "http://twitter.com/success/guion-bluford"
          }
        }
      ]
    }
  }
}

POST kibana_sample_data_logs/_search
{
  "query": {
    "bool": {
      "filter": {
        "prefix": {
          "referer": "http://twitter.com/succes"
        }
      }
    }
  }
}

POST kibana_sample_data_logs/_search
{
  "query": {
    "bool": {
      "filter": {
        "match_phrase_prefix": {
          "request": {
            "query": "/people"
          }
        }
      }
    }
  }
}

POST kibana_sample_data_logs/_search
{
  "query": {
    "bool": {
      "filter": {
         "exists": {
            "field": "memory"
        }
      }
    }
  }
}

POST kibana_sample_data_logs/_search
{ 
  "query": {
    "bool": {
      "must_not": {
         "exists": {
            "field": "memory"
        }
      }
    }
  }
}

POST kibana_sample_data_logs/_search
{
  "_source": ["agent","url","phpmemory"], 
  "query": {
    "bool": {
      "filter": [
        {
          "term": {
            "agent": "windows"
          }
        },
        {
          "term": {
            "url": "name:john"
          }
        },
        {
          "exists": {
            "field": "phpmemory"
        }
        }
      ]
    }
  }
}

POST kibana_sample_data_logs/_search
{
  "query": {
    "bool": {
      "should": [
        {
          "range": {
            "response": {
              "gte": 400
            }
          }
        },
        {
          "term": {
            "tags": "error"
          }
        }
      ]
    }
  }
}

POST kibana_sample_data_logs/_search
{
  "query": {
    "bool": {
      "must_not": [
        {
          "terms": {
            "tags": [
              "warning",
              "error",
              "info"
            ]
          }
        }
      ]
    }
  }
}

POST kibana_sample_data_logs/_search
{
  "query": {
    "bool": {
      "filter": {
        "range": {
          "timestamp": {
            "gte": "now-1w/d",
            "lte":"now/d"
          }
        }
      }
    }
  }
}

POST kibana_sample_data_flights/_search
{
  "_source": [
    "DestCityName",
    "OriginCityName"
  ],
  "query": {
    "bool": {
      "should": [
        {
          "bool": {
            "filter": {
              "fuzzy": {
                "OriginCityName": {
                  "value": "Sydney",
                  " fuzziness ": 2
                }
              }
            }
          }
        },
        {
          "bool": {
            "filter": {
              "fuzzy": {
                "DestCityName": {
                  "value": "Sydney",
                  " fuzziness ": 2
                }
              }
            }
          }
        }
      ],
      "minimum_should_match": 1
    }
  }
}

Exercise3

  1. 使用scroll查询所有索引前100个文档,保持搜索上下文2分钟,并使用返回的scroll id查询下一个批次
  2. 查询kibana_sample_data_logs索引过滤字段response值≥400
  3. 构造查询模板with_response_and_tag,有一个参数with_min_response代表response的最小值,参数with_max_response代表最大值,参数with_tag代表tags可能含有的值
  4. 测试查询模板with_response_and_tag设置参数分别为:400,500,security
  5. 更新模板,如果with_max_response未设置,则不设置最大值,如果with_tag未设置,则不执行此项过滤
  6. 测试模板设置with_min_response为500,测试模板设置参数为:min=500,tags=security

解:

POST kibana_sample*/_search?scroll=2m
{
  "size": 100,
  "query": {
    "match_all": {}
  }
}

POST /_search/scroll 
{
  "scroll" : "2m", 
  "scroll_id" : "DnF1ZXJ5VGhlbkZldGNoAwAAAAAAASGqFnJDN0NmdS0tUm5hU08wcFBHOWFPMGcAAAAAAAEhqxZyQzdDZnUtLVJuYVNPMHBQRzlhTzBnAAAAAAABIawWckM3Q2Z1LS1SbmFTTzBwUEc5YU8wZw==" 
}

POST kibana_sample_data_logs/_search
{
  "query": {
    "bool": {
      "filter": {
        "range": {
          "response": {
            "gte": 400
          }
        }
      }
    }
  }
}

POST _scripts/with_response_and_tag
{
  "script": {
    "lang": "mustache",
    "source": {
      "query": {
        "bool": {
          "filter": [
            {
              "range": {
                "response": {
                  "gte": "{{with_min_response}}",
                  "lte": "{{with_max_response}}"
                }
              }
            },
            {
              "term": {
                "tags": "{{with_tag}}"
              }
            }
          ]
        }
      }
    }
  }
}

POST kibana_sample_data_logs/_search/template
{
  "id": "with_response_and_tag",
  "params": {
    "with_min_response": 400,
    "with_max_response": 500,
    "with_tag": "security"
  }
}

//具体操作方法可以参考查询模板文章:https://www.jianshu.com/p/11412cc44c46
POST _scripts/with_response_and_tag
{
  "script": {
    "lang": "mustache",
    "source":"{\"query\":{\"bool\":{\"filter\":[{\"range\": {\"response\":{\"gte\":\"{{with_min_response}}\"{{#with_max_response}},{{/with_max_response}}{{#with_max_response}}\"lte\":\"{{with_max_response}}\"{{/with_max_response}}}}}{{#with_tag}},{{/with_tag}}{{#with_tag}}{\"term\": {\"tags\":\"{{with_tag}}\"}}{{/with_tag}}]}}}"
  }
}

POST kibana_sample_data_logs/_search/template
{
  "id": "with_response_and_tag",
  "params": {
    "with_min_response": 400
  }
}
POST kibana_sample_data_logs/_search/template
{
  "id": "with_response_and_tag",
  "params": {
    "with_min_response": 400,
    "with_max_response": 500,
    "with_tag": "security"
  }
}

Exercise4

  1. 创建一个聚合,名为max_distance,计算DistanceKilometers字段的最大值
  2. 创建一个聚合,名为stats_flight_time,计算FlightTimeMin字段的统计数据
  3. 创建两个聚合,cardinality_origin_cities,cardinality_dest_cities计算OriginCityName和DestCityName去重数量
  4. 创建一个名为popular_origin_cities的聚合计算以OriginCityName字段分组的航班数量,只返回5个以des排序的buckets
  5. 创建一个名为avg_price_histogram的聚合将文档以250为间隔对AvgTicketPrice字段进行分组统计
  6. 创建一个名为popular_carriers的聚合以Carrier字段进行分组计算航班数量,添加一个子聚合名为carrier_stats_delay计算相关carrier桶的FlightDelayMin字段的统计数据,添加另一个子聚合名为carrier_max_delay展示每个carrier桶的FlightDelayMin字段的最大值
  7. 使用timestamp字段创建聚合flights_every_10_days,将航班信息按10天间隔进行分组
  8. 使用timestamp字段创建聚合flights_by_day,将航班信息按天进行分组,添加一个子聚合destinations_by_day将每天的桶按DestCityName字段再分组
  9. 添加一个子聚合popular_destinations_by_day到destinations_by_day子聚合下面,返回每个桶前三个最流行的文档(对score排序)
  10. 更新popular_destinations_by_day只显示top hit对象的DestCityName字段

解:

POST kibana_sample_data_flights/_search
{
  "size": 0, 
  "aggs": {
    "max_distance": {
      "max": {
        "field": "DistanceKilometers"
      }
    }
  }
}

POST kibana_sample_data_flights/_search
{
  "size": 0, 
  "aggs": {
    "stats_flight_time": {
      "stats": {
        "field": "FlightTimeMin"
      }
    }
  }
}

POST kibana_sample_data_flights/_search
{
  "size": 0,
  "aggs": {
    "cardinality_origin_cities": {
      "cardinality": {
        "field": "OriginCityName"
      }
    },
    "cardinality_dest_cities": {
      "cardinality": {
        "field": "DestCityName"
      }
    }
  }
}

POST kibana_sample_data_flights/_search
{
  "size": 0, 
  "aggs": {
    "popular_origin_cities": {
      "terms": {
        "field": "OriginCityName",
        "order" : { "_count" : "desc" },
        "size" : 5
      }
    }
  }
}

POST kibana_sample_data_flights/_search
{
  "size": 0, 
  "aggs": {
    "avg_price_histogram": {
      "histogram": {
        "field": "AvgTicketPrice",
        "interval": 250
      }
    }
  }
}

POST kibana_sample_data_flights/_search
{
  "size": 0,
  "aggs": {
    "popular_carriers": {
      "terms": {
        "field": "Carrier"
      },
      "aggs": {
        "carrier_stats_delay": {
          "stats": {
            "field": "FlightDelayMin"
          }
        },
        "carrier_max_delay": {
          "max": {
            "field": "FlightDelayMin"
          }
        }
      }
    }
  }
}

POST kibana_sample_data_flights/_search
{
  "size": 0, 
  "aggs": {
    "flights_every_10_days": {
      "date_histogram": {
        "field": "timestamp",
        "fixed_interval": "10d"
      }
    }
  }
}

POST kibana_sample_data_flights/_search
{
  "size": 0, 
  "aggs": {
    "flights_by_day": {
      "date_histogram": {
        "field": "timestamp",
        "calendar_interval": "day"
      },
      "aggs": {
        "destinations_by_day": {
          "terms": {
            "field": "DestCityName"
          }
        }
      }
    }
  }
}

POST kibana_sample_data_flights/_search
{
  "size": 0,
  "aggs": {
    "flights_by_day": {
      "date_histogram": {
        "field": "timestamp",
        "calendar_interval": "day"
      },
      "aggs": {
        "destinations_by_day": {
          "terms": {
            "field": "DestCityName"
          },
          "aggs": {
            "popular_destinations_by_day": {
              "top_hits": {
                "sort": [
                  {
                    "_score": {
                      "order": "desc"
                    }
                  }
                ],
                "size": 3
              }
            }
          }
        }
      }
    }
  }
}

POST kibana_sample_data_flights/_search
{
  "size": 0,
  "aggs": {
    "flights_by_day": {
      "date_histogram": {
        "field": "timestamp",
        "calendar_interval": "day"
      },
      "aggs": {
        "destinations_by_day": {
          "terms": {
            "field": "DestCityName"
          },
          "aggs": {
            "popular_destinations_by_day": {
              "top_hits": {
                "sort": [
                  {
                    "_score": {
                      "order": "desc"
                    }
                  }
                ],
                "_source": "DestCityName", 
                "size": 3
              }
            }
          }
        }
      }
    }
  }
}
  1. 移除flights_by_day聚合的popular_destinations_by_day子聚合,添加一个管道聚合most_popular_destination_of_the_day,定义popular_destinations_by_day桶标识每天里面最流行的目的地,即文档最多的;添加一个管道聚合day_with_most_flights标识flights_by_day每天分组的桶最多文档的那一天的桶;添加一个管道聚合day_with_the_most_popular_destination_over_all_days标识flights_by_day桶的最大most_popular_destination_of_the_day值

解:

1.航班按天分组;
2.然后每天里面再按目的地分组;
3.求出每天里面最流行的目的地;
4.求出航班最多的那一天
5.求出3里面的最大值。

POST kibana_sample_data_flights/_search
{
  "size": 0,
  "aggs": {
    "flights_by_day": {
      "date_histogram": {
        "field": "timestamp",
        "fixed_interval": "1d"
      },
      "aggs": {
        "destinations_by_day": {
          "terms": {
            "field": "DestCityName"
          }
        },
        "most_popular_destination_of_the_day": {
          "max_bucket": {
            "buckets_path": "destinations_by_day>_count"
          }
        }
      }
    },
    "day_with_most_flights": {
      "max_bucket": {
        "buckets_path": "flights_by_day._count"
      }
    },
    "day_with_the_most_popular_destination_over_all_days":{
      "max_bucket": {
        "buckets_path": "flights_by_day.most_popular_destination_of_the_day"
      }
    }
  }
}

你可能感兴趣的:(Elastic Certified Engineer 德国博士题目)