官网文档阅读笔记
https://spark.apache.org/docs/latest/streaming-kafka-0-10-integration.html
Spark Streaming + Kafka Integration Guide Kafka broker version 0.10.0 or higher
The Spark Streaming integration for Kafka 0.10 is similar in design to the 0.8 Direct Stream approach. It provides simple parallelism, 1:1 correspondence between Kafka partitions and Spark partitions, and access to offsets and metadata. However, because the newer integration uses the new Kafka consumer API instead of the simple API, there are notable differences in usage. This version of the integration is marked as experimental, so the API is potentially subject to change.
Kafka 0.10 的 Spark Streaming集成在设计上与 Kafka 0.8 Direct Stream approach类似。 它提供了简单的并行处理,Kafka 分区和 Spark 分区之间 1:1 对应,以及对偏移和元数据的访问。但是,由于使用新的 new Kafka consumer API 而不是 Kafka 0.8 的simple API,因此在使用上存在显著差异。此版本的集成标记为实验性,因此 API 可能会发生变化。
Linking
For Scala/Java applications using SBT/Maven project definitions, link your streaming application with the following artifact (see Linking section in the main programming guide for further information).
对于使用 SBT/Maven 的 Scala/Java 应用程序,请使用以下设置链接你的流式应用程序(有关详细信息,请参阅主编程指南中的链接部分 Linking section )。
groupId = org.apache.spark
artifactId = spark-streaming-kafka-0-10_2.12
version = 2.4.5
Do not manually add dependencies on org.apache.kafka
artifacts (e.g. kafka-clients
). The spark-streaming-kafka-0-10
artifact has the appropriate transitive dependencies already, and different versions may be incompatible in hard to diagnose ways.
!!!不要手动添加(例如 kafka-clients
)的依赖项到org.apache.kafka
可能会带来难以诊断的潜在问题。 spark-streaming-kafka-0-10
artifact已经具有适当的传递依赖关系,如果再添加了不同的版本可能会带来难以诊断的潜在问题。
Creating a Direct Stream
Note that the namespace for the import includes the version, org.apache.spark.streaming.kafka010
请注意,导入的包包括版本 org.apache.spark.streaming.kafka010
- Scala
- Java
import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.streaming.kafka010._
import org.apache.spark.streaming.kafka010.LocationStrategies.PreferConsistent
import org.apache.spark.streaming.kafka010.ConsumerStrategies.Subscribe
val kafkaParams = Map[String, Object](
"bootstrap.servers" -> "localhost:9092,anotherhost:9092",
"key.deserializer" -> classOf[StringDeserializer],
"value.deserializer" -> classOf[StringDeserializer],
"group.id" -> "use_a_separate_group_id_for_each_stream",
"auto.offset.reset" -> "latest",
"enable.auto.commit" -> (false: java.lang.Boolean)
)
val topics = Array("topicA", "topicB")
val stream = KafkaUtils.createDirectStream[String, String](
streamingContext,
PreferConsistent,
Subscribe[String, String](topics, kafkaParams)
)
stream.map(record => (record.key, record.value))
Each item in the stream is a ConsumerRecord
stream中的每个项目都是一个ConsumerRecord
import java.util.*;
import org.apache.spark.SparkConf;
import org.apache.spark.TaskContext;
import org.apache.spark.api.java.*;
import org.apache.spark.api.java.function.*;
import org.apache.spark.streaming.api.java.*;
import org.apache.spark.streaming.kafka010.*;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.serialization.StringDeserializer;
import scala.Tuple2;
Map kafkaParams = new HashMap<>();
kafkaParams.put("bootstrap.servers", "localhost:9092,anotherhost:9092");
kafkaParams.put("key.deserializer", StringDeserializer.class);
kafkaParams.put("value.deserializer", StringDeserializer.class);
kafkaParams.put("group.id", "use_a_separate_group_id_for_each_stream");
kafkaParams.put("auto.offset.reset", "latest");
kafkaParams.put("enable.auto.commit", false);
Collection topics = Arrays.asList("topicA", "topicB");
JavaInputDStream> stream =
KafkaUtils.createDirectStream(
streamingContext,
LocationStrategies.PreferConsistent(),
ConsumerStrategies.Subscribe(topics, kafkaParams)
);
stream.mapToPair(record -> new Tuple2<>(record.key(), record.value()));
For possible kafkaParams, see Kafka consumer config docs. If your Spark batch duration is larger than the default Kafka heartbeat session timeout (30 seconds), increase heartbeat.interval.ms and session.timeout.ms appropriately. For batches larger than 5 minutes, this will require changing group.max.session.timeout.ms on the broker. Note that the example sets enable.auto.commit to false, for discussion see Storing Offsets below.
有关可能的 kafkaParams,请参阅 Kafka consumer config docs。如果 Spark 批处理持续时间大于默认 Kafka 心跳会话机制heartbeat session(30 秒),请适当增加heartbeat.interval.ms
并适当增加session.timeout.ms
。 对于大于 5 分钟的批处理,需要在broker上更改group.max.session.timeout.ms
。需要注意,enable.auto.commit
需设置为 false, 详见Storing Offsets 。
LocationStrategies
The new Kafka consumer API will pre-fetch messages into buffers. Therefore it is important for performance reasons that the Spark integration keep cached consumers on executors (rather than recreating them for each batch), and prefer to schedule partitions on the host locations that have the appropriate consumers.
新的 new Kafka consumer API 会预先将消息提取到缓冲区中。 因此,非常重要的一点是,出于性能的考虑,Spark integration应该将cached consumers保留在executors上(而不是为每个批处理重新创建它们),并且应该将partitions布置在有合适consumers的主机上。
In most cases, you should use LocationStrategies.PreferConsistent
as shown above. This will distribute partitions evenly across available executors. If your executors are on the same hosts as your Kafka brokers, use PreferBrokers
, which will prefer to schedule partitions on the Kafka leader for that partition. Finally, if you have a significant skew in load among partitions, use PreferFixed
. This allows you to specify an explicit mapping of partitions to hosts (any unspecified partitions will use a consistent location).
在大多数情况下,应该使用 LocationStrategies.PreferConsistent
, 如上示例。它将在可用的执行器均匀分布partitions。 如果你的executors与Kafka brokers位于同一主机上,可以使用PreferBrokers
,它将在相应的Kafka leader上分配partition。 最后,如果分区之间的负载有显著倾斜,可以使用PreferFixed
。这将允许你对partitions和主机hosts之间进行绑定(任何未指定的分区仍将使用PreferConsistent
)。
The cache for consumers has a default maximum size of 64. If you expect to be handling more than (64 * number of executors) Kafka partitions, you can change this setting via spark.streaming.kafka.consumer.cache.maxCapacity
.
consumers的缓存个数默认最大为 64。 如果您希望处理超过 (64乘以 executors执行器个数) 的Kafka 分区, 可以更改 spark.streaming.kafka.consumer.cache.maxCapacity
来设置。
If you would like to disable the caching for Kafka consumers, you can set spark.streaming.kafka.consumer.cache.enabled
to false
.
如果要禁用 Kafka consumers缓存,可以将spark.streaming.kafka.consumer.cache.enabled
设置为 false。
The cache is keyed by topicpartition and group.id, so use a separate group.id
for each call to createDirectStream
.
Kafka consumers缓存cache 键值Key是通过主题分区和group.id来构造的,因此每个调用都需要用单独的group.id来创建 createDirectStream
.
ConsumerStrategies
The new Kafka consumer API has a number of different ways to specify topics, some of which require considerable post-object-instantiation setup. ConsumerStrategies
provides an abstraction that allows Spark to obtain properly configured consumers even after restart from checkpoint.
new Kafka consumer API 具有许多不同的方法来指定topics,其中一些需要在实例化后(post-object-instantiation)进行大量设置。 为此Spark提供一个抽象ConsumerStrategies
,在启动后来正确的配置Spark consumers,包括从checkpoint重启的场景。
ConsumerStrategies.Subscribe
, as shown above, allows you to subscribe to a fixed collection of topics. SubscribePattern
allows you to use a regex to specify topics of interest. Note that unlike the 0.8 integration, using Subscribe
or SubscribePattern
should respond to adding partitions during a running stream. Finally, Assign
allows you to specify a fixed collection of partitions. All three strategies have overloaded constructors that allow you to specify the starting offset for a particular partition.
If you have specific consumer setup needs that are not met by the options above, ConsumerStrategy
is a public class that you can extend.
Creating an RDD
If you have a use case that is better suited to batch processing, you can create an RDD for a defined range of offsets.
- Scala
- Java
// Import dependencies and create kafka params as in Create Direct Stream above
val offsetRanges = Array(
// topic, partition, inclusive starting offset, exclusive ending offset
OffsetRange("test", 0, 0, 100),
OffsetRange("test", 1, 0, 100)
)
val rdd = KafkaUtils.createRDD[String, String](sparkContext, kafkaParams, offsetRanges, PreferConsistent)
// Import dependencies and create kafka params as in Create Direct Stream above
OffsetRange[] offsetRanges = {
// topic, partition, inclusive starting offset, exclusive ending offset
OffsetRange.create("test", 0, 0, 100),
OffsetRange.create("test", 1, 0, 100)
};
JavaRDD> rdd = KafkaUtils.createRDD(
sparkContext,
kafkaParams,
offsetRanges,
LocationStrategies.PreferConsistent()
);
Note that you cannot use PreferBrokers
, because without the stream there is not a driver-side consumer to automatically look up broker metadata for you. Use PreferFixed
with your own metadata lookups if necessary.
Obtaining Offsets
- Scala
- Java
stream.foreachRDD { rdd =>
val offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
rdd.foreachPartition { iter =>
val o: OffsetRange = offsetRanges(TaskContext.get.partitionId)
println(s"${o.topic} ${o.partition} ${o.fromOffset} ${o.untilOffset}")
}
}
stream.foreachRDD(rdd -> {
OffsetRange[] offsetRanges = ((HasOffsetRanges) rdd.rdd()).offsetRanges();
rdd.foreachPartition(consumerRecords -> {
OffsetRange o = offsetRanges[TaskContext.get().partitionId()];
System.out.println(
o.topic() + " " + o.partition() + " " + o.fromOffset() + " " + o.untilOffset());
});
});
Note that the typecast to HasOffsetRanges
will only succeed if it is done in the first method called on the result of createDirectStream
, not later down a chain of methods. Be aware that the one-to-one mapping between RDD partition and Kafka partition does not remain after any methods that shuffle or repartition, e.g. reduceByKey() or window().
Storing Offsets
Kafka delivery semantics in the case of failure depend on how and when offsets are stored. Spark output operations are at-least-once. So if you want the equivalent of exactly-once semantics, you must either store offsets after an idempotent output, or store offsets in an atomic transaction alongside output. With this integration, you have 3 options, in order of increasing reliability (and code complexity), for how to store offsets.
Checkpoints
If you enable Spark checkpointing, offsets will be stored in the checkpoint. This is easy to enable, but there are drawbacks. Your output operation must be idempotent, since you will get repeated outputs; transactions are not an option. Furthermore, you cannot recover from a checkpoint if your application code has changed. For planned upgrades, you can mitigate this by running the new code at the same time as the old code (since outputs need to be idempotent anyway, they should not clash). But for unplanned failures that require code changes, you will lose data unless you have another way to identify known good starting offsets.
Kafka itself
Kafka has an offset commit API that stores offsets in a special Kafka topic. By default, the new consumer will periodically auto-commit offsets. This is almost certainly not what you want, because messages successfully polled by the consumer may not yet have resulted in a Spark output operation, resulting in undefined semantics. This is why the stream example above sets “enable.auto.commit” to false. However, you can commit offsets to Kafka after you know your output has been stored, using the commitAsync
API. The benefit as compared to checkpoints is that Kafka is a durable store regardless of changes to your application code. However, Kafka is not transactional, so your outputs must still be idempotent.
- Scala
- Java
stream.foreachRDD { rdd =>
val offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
// some time later, after outputs have completed
stream.asInstanceOf[CanCommitOffsets].commitAsync(offsetRanges)
}
As with HasOffsetRanges, the cast to CanCommitOffsets will only succeed if called on the result of createDirectStream, not after transformations. The commitAsync call is threadsafe, but must occur after outputs if you want meaningful semantics.
stream.foreachRDD(rdd -> {
OffsetRange[] offsetRanges = ((HasOffsetRanges) rdd.rdd()).offsetRanges();
// some time later, after outputs have completed
((CanCommitOffsets) stream.inputDStream()).commitAsync(offsetRanges);
});
Your own data store
For data stores that support transactions, saving offsets in the same transaction as the results can keep the two in sync, even in failure situations. If you’re careful about detecting repeated or skipped offset ranges, rolling back the transaction prevents duplicated or lost messages from affecting results. This gives the equivalent of exactly-once semantics. It is also possible to use this tactic even for outputs that result from aggregations, which are typically hard to make idempotent.
- Scala
- Java
// The details depend on your data store, but the general idea looks like this
// begin from the the offsets committed to the database
val fromOffsets = selectOffsetsFromYourDatabase.map { resultSet =>
new TopicPartition(resultSet.string("topic"), resultSet.int("partition")) -> resultSet.long("offset")
}.toMap
val stream = KafkaUtils.createDirectStream[String, String](
streamingContext,
PreferConsistent,
Assign[String, String](fromOffsets.keys.toList, kafkaParams, fromOffsets)
)
stream.foreachRDD { rdd =>
val offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
val results = yourCalculation(rdd)
// begin your transaction
// update results
// update offsets where the end of existing offsets matches the beginning of this batch of offsets
// assert that offsets were updated correctly
// end your transaction
}
// The details depend on your data store, but the general idea looks like this
// begin from the the offsets committed to the database
Map fromOffsets = new HashMap<>();
for (resultSet : selectOffsetsFromYourDatabase)
fromOffsets.put(new TopicPartition(resultSet.string("topic"), resultSet.int("partition")), resultSet.long("offset"));
}
JavaInputDStream> stream = KafkaUtils.createDirectStream(
streamingContext,
LocationStrategies.PreferConsistent(),
ConsumerStrategies.Assign(fromOffsets.keySet(), kafkaParams, fromOffsets)
);
stream.foreachRDD(rdd -> {
OffsetRange[] offsetRanges = ((HasOffsetRanges) rdd.rdd()).offsetRanges();
Object results = yourCalculation(rdd);
// begin your transaction
// update results
// update offsets where the end of existing offsets matches the beginning of this batch of offsets
// assert that offsets were updated correctly
// end your transaction
});
SSL / TLS
The new Kafka consumer supports SSL. To enable it, set kafkaParams appropriately before passing to createDirectStream
/ createRDD
. Note that this only applies to communication between Spark and Kafka brokers; you are still responsible for separately securing Spark inter-node communication.
- Scala
- Java
val kafkaParams = Map[String, Object](
// the usual params, make sure to change the port in bootstrap.servers if 9092 is not TLS
"security.protocol" -> "SSL",
"ssl.truststore.location" -> "/some-directory/kafka.client.truststore.jks",
"ssl.truststore.password" -> "test1234",
"ssl.keystore.location" -> "/some-directory/kafka.client.keystore.jks",
"ssl.keystore.password" -> "test1234",
"ssl.key.password" -> "test1234"
)
Map kafkaParams = new HashMap();
// the usual params, make sure to change the port in bootstrap.servers if 9092 is not TLS
kafkaParams.put("security.protocol", "SSL");
kafkaParams.put("ssl.truststore.location", "/some-directory/kafka.client.truststore.jks");
kafkaParams.put("ssl.truststore.password", "test1234");
kafkaParams.put("ssl.keystore.location", "/some-directory/kafka.client.keystore.jks");
kafkaParams.put("ssl.keystore.password", "test1234");
kafkaParams.put("ssl.key.password", "test1234");
Deploying
As with any Spark applications, spark-submit
is used to launch your application.
For Scala and Java applications, if you are using SBT or Maven for project management, then package spark-streaming-kafka-0-10_2.12
and its dependencies into the application JAR. Make sure spark-core_2.12
and spark-streaming_2.12
are marked as provided
dependencies as those are already present in a Spark installation. Then use spark-submit
to launch your application (see Deploying section in the main programming guide).