我之前在ClickHouse vs Doris 读写性能比较 一文中,初步做了一下ClickHouse和Doris的读写性能比较,但由于数据样本比较小,且未发挥出所有硬件资源的性能,因此进行了第二轮压测。
本轮压测与上一轮的区别在于:
节点 | IP | 分片编号 | 副本编号 |
---|---|---|---|
ck93 | 192.168.101.93 | 1 | 1 |
ck94 | 192.168.101.94 | 1 | 2 |
ck96 | 192.168.101.96 | 2 | 1 |
ck97 | 192.168.101.97 | 2 | 2 |
角色 | 节点 | IP |
---|---|---|
FE | ck94 | 192.168.101.94 |
BE | ck93 | 192.168.101.93 |
BE | ck94 | 192.168.101.94 |
BE | ck96 | 192.168.101.96 |
BE | ck97 | 192.168.101.97 |
BE | ck98 | 192.168.101.98 |
meta_dir = /data01/doris/fe
http_port = 58030
rpc_port = 59020
query_port = 59030
edit_log_port = 59010
priority_networks = 192.168.101.0/24
enable_single_replica_load = true
max_routine_load_task_concurrent_num = 50
max_routine_load_task_num_per_be = 10
be_port = 59060
webserver_port = 58040
heartbeat_service_port = 59050
brpc_port = 58060
priority_networks = 192.168.101.0/24
storage_root_path = /data01/doris/be
enable_single_replica_load = true
inverted_index_compaction_enable = true
scan_thread_nice_value = 5
计10个节点。
节点 | 节点 | 服务 |
---|---|---|
node1 | ck93 | 192.168.101.93:59200 |
node2 | ck93 | 192.168.101.93:59201 |
node3 | ck94 | 192.168.101.94:59200 |
node4 | ck94 | 192.168.101.94:59201 |
node5 | ck96 | 192.168.101.96:59200 |
node6 | ck96 | 192.168.101.96:59201 |
node7 | ck97 | 192.168.101.97:59200 |
node8 | ck97 | 192.168.101.97:59201 |
node9 | ck98 | 192.168.101.98:59200 |
node10 | ck98 | 192.168.101.98:59201 |
4个节点clickhouse-server日志,每个节点约2.5亿数据量,共计10亿数据,原始数据kafka压缩后为155GB。
--- 本地表
create table log_test on cluster abc (
`@@id` String NOT NULL CODEC(ZSTD(1)),
`@message` String NOT NULL CODEC(ZSTD(1)) ,
`@filehashkey` String NOT NULL CODEC(ZSTD(1)) ,
`@collectiontime` DateTime64(3) CODEC(DoubleDelta, LZ4),
`@hostname` LowCardinality(String) NOT NULL CODEC(ZSTD(1)) ,
`@path` String NOT NULL CODEC(ZSTD(1)) ,
`@rownumber` Int64 NOT NULL ,
`@seq` Int64 NOT NULL ,
`@ip` LowCardinality(String) NOT NULL CODEC(ZSTD(1)) ,
`@topic` LowCardinality(String) NOT NULL CODEC(ZSTD(1)) ,
`@timestamp` DateTime64(3) CODEC(DoubleDelta, LZ4),
INDEX message_idx `@message` TYPE ngrambf_v1(5, 65535, 1, 0) GRANULARITY 1,
PROJECTION p_cnt (
SELECT `@ip`, `@path`, count() GROUP BY `@ip`, `@path`
)
)ENGINE = ReplicatedMergeTree
PARTITION BY toYYYYMMDD(`@timestamp`)
ORDER BY (`@timestamp`, `@ip`, `@path`);
--- 分布式表
create table dist_log_test on cluster abc as log_test engine = Distributed('abc', 'default', 'log_test')
CREATE TABLE demo.log_test (
`@@id` CHAR(34) NOT NULL ,
`@message` STRING NOT NULL ,
`@filehashkey` CHAR(34) NOT NULL,
`@collectiontime` DATETIME(3) ,
`@hostname` VARCHAR(20) NOT NULL ,
`@path` VARCHAR(256) NOT NULL ,
`@rownumber` BIGINT NOT NULL ,
`@seq` BIGINT NOT NULL,
`@ip` CHAR(16) NOT NULL ,
`@topic` CHAR(16) NOT NULL,
`@timestamp` DATETIME(3),
INDEX idx_message_inv(`@message`) USING INVERTED PROPERTIES(
"parser" = "unicode",
"parser_mode" = "fine_grained",
"support_phrase" = "true"
)
)
DUPLICATE KEY(`@@id`)
PARTITION BY RANGE(`@timestamp`) ()
DISTRIBUTED BY HASH(`@@id`) BUCKETS AUTO
ROLLUP (
r1 (`@ip`, `@path`)
)
PROPERTIES (
"replication_allocation" = "tag.location.default: 2",
"dynamic_partition.enable" = "true",
"dynamic_partition.time_unit" = "MONTH",
"dynamic_partition.start" = "-12",
"dynamic_partition.create_history_partition" = "true",
"dynamic_partition.history_partition_num" = "12",
"dynamic_partition.end" = "3",
"dynamic_partition.prefix" = "p",
"compression"="zstd",
"compaction_policy"="time_series",
"enable_single_replica_compaction"="true"
);
开启5个sinker并发,向clickhouse写入数据。配置如下:
{
"clickhouse": {
"cluster": "abc",
"db": "default",
"hosts": [
["192.168.101.93", "192.168.101.94"],
["192.168.101.96", "192.168.101.97"]
],
"port": 19000,
"username": "default",
"password": "123456",
"maxOpenConns": 5,
"retryTimes": 0
},
"kafka": {
"brokers": "192.168.101.94:29092,192.168.101.96:29092,192.168.101.98:29092"
},
"tasks": [{
"name": "log_test",
"topic": "log_test",
"earliest": true,
"consumerGroup": "test_2024001",
"parser": "fastjson",
"tableName": "log_test",
"autoSchema": true,
"dynamicSchema":{
"enable": false
},
"prometheusSchema": false,
"bufferSize": 1000000,
"flushInterval": 10
}],
"logLevel": "info"
}
CREATE ROUTINE LOAD demo.log_test_10 ON log_test
COLUMNS(`@message`,`@@id`,`@filehashkey`,`@collectiontime`,`@hostname`,`@path`,`@rownumber`,`@seq`,`@ip`,`@topic`,`@timestamp`)
PROPERTIES
(
"desired_concurrent_number"="10",
"max_error_number" = "500",
"max_batch_interval" = "20",
"max_batch_rows" = "1000000",
"max_batch_size" = "536870912",
"strict_mode" = "false",
"format" = "json"
)
FROM KAFKA
(
"kafka_broker_list" = "192.168.101.94:29092,192.168.101.96:29092,192.168.101.98:29092",
"kafka_topic" = "log_test",
"kafka_partitions" = "0,1,2,3,4,5",
"kafka_offsets" = "0,0,0,0,0,0"
);
{
"order": 200,
"index_patterns": [
"estest_chenyc_log_*"
],
"settings": {
"index": {
"codec": "best_compression",
"refresh_interval": "10s",
"number_of_shards": "10",
"translog": {
"sync_interval": "60s",
"durability": "async"
},
"merge": {
"scheduler": {
"max_thread_count": "10"
},
"policy": {
"max_merged_segment": "5g"
}
},
"unassigned": {
"node_left": {
"delayed_timeout": "15m"
}
},
"number_of_replicas": "1"
}
},
"mappings": {
"dynamic": true,
"dynamic_templates": [
{
"message_field": {
"path_match": "@message",
"mapping": {
"norms": false,
"type": "text"
},
"match_mapping_type": "string"
}
},
{
"string_fields": {
"mapping": {
"type": "keyword"
},
"match_mapping_type": "string",
"match": "*"
}
}
],
"properties": {
"@message": {
"norms": false,
"type": "text"
},
"@seq": {
"type": "long"
},
"@timestamp": {
"type": "date"
},
"@topic": {
"type": "keyword"
},
"@filehashkey": {
"type": "keyword"
},
"@@id": {
"type": "keyword"
},
"@rownumber": {
"type": "long"
},
"@ip": {
"type": "keyword"
},
"@collectiontime": {
"type": "date"
},
"@hostname": {
"type": "keyword"
},
"@path": {
"type": "keyword"
}
}
},
"aliases": {}
}
资源配置:
(为了最大发挥es的写入性能,重新生成了一份数据,设置kafka的topic partition数为 30)
中台配置:
并发数 | 资源占用(sinker) | 资源占用(clickhouse) | 数据总量 | 写入速度 | 数据大小 | 压缩后大小(含副本) |
---|---|---|---|---|---|---|
5 | 15vcpu|25G | 5vcpu|6G | 10亿 | 1205k/s | 155GB | 95GB |
5(有大查询) | 10vcpu|16G | 37vcpu|8G | 10亿 | 890k/s | 155GB | 95GB |
并发数 | 资源占用(be) | 数据总量 | 写入速度 | 数据大小 | 压缩后大小(含副本) |
---|---|---|---|---|---|
5 | 2~8vcpu|9GB | 10亿 | 532k/s | 155GB | 161GB |
10 | 2~11vcpu|10GB | 10亿 | 559k/s | 155GB | 161GB |
15 | 5-15vcpu|10GB | 10亿 | 675k/s | 155GB | 161GB |
20 | 3~12vcpu|9GB | 10亿 | 609k/s | 155GB | 161GB |
15并发,有大查询 | 16~29vcpu|12GB | 10亿 | 490k/s | 155GB | 161GB |
cpu负载各个节点有所区别,部分节点cpu负载比较高(应该是被写入数据的节点),剩余节点CPU负载都维持在一个相对低的水平,和ClickHouse相当。
使用擎创科技内部的日志精析产品启动flink存储任务写入数据。
并发数 | ES节点资源占用 | 数据总量 | 写入速度 | 数据大小 | 压缩后大小(含副本) |
---|---|---|---|---|---|
30 | 7vcpu|38GB | 10亿 | 106k/s | 155GB | 281GB |
30(有大查询) | 11vcpu|39GB | 10亿 | 75k/s | 155GB | 281GB |
ES:CK:Doris写入速度比为 1:6: 12。Doris写入性能是ES的6倍,ck是ES的12倍。
在本次测试中,数据均保留两副本,存储相同的数据,得出压缩比为ES:CK:Doris 为 1: 0.35: 0.57。即存储相同的数据量,Doris只需要ES近一半的存储资源,ClickHouse仅需ES三分之一的存储资源即可满足要求。
依然使用上次的查询场景:
场景 | 说明 |
---|---|
场景1 | 根据ip和path维度统计每个ip下path的个数 |
场景2 | 统计每个ip下的Error日志的数量 |
场景3 | 统计日志中出现Debug 和 query_id 为 cdb56920-2d39-4e6d-be99-dd6ef24cc66a 的条数 |
场景4 | 统计出现Trace和gauge.apm_service_span出现的次数 |
场景5 | 查询Error中出现READ_ONLY的日志明细 |
场景6 | 查询日志中出现“上海”关键字的明细 |
查询语句:
场景 | 数据库 | SQL语句 |
---|---|---|
场景1 | clickhouse | SELECT @ip, @path, count() FROM dist_log_test GROUP BY @ip,@path |
场景1 | Doris | SELECT @ip, @path, count() FROM log_test GROUP BY @ip,@path |
场景1 | ElasticSearch | |stats count by @ip,@path |
场景2 | clickhouse | SELECT @ip, count() FROM dist_log_test WHERE @message LIKE '%Error%' GROUP BY @ip |
场景2 | Doris | SELECT @ip, count() FROM log_test WHERE @message MATCH_ANY 'Error' GROUP BY @ip |
场景2 | ElasticSearch | Error | stats count by @ip |
场景3 | clickhouse | SELECT count() FROM dist_log_test WHERE @message LIKE '%Debug%' AND @message LIKE '%cdb56920-2d39-4e6d-be99-dd6ef24cc66a%' |
场景3 | Doris | SELECT count() FROM log_test WHERE @message MATCH_ALL 'Debug cdb56920-2d39-4e6d-be99-dd6ef24cc66a' |
场景3 | ElasticSearch | Debug AND cdb56920-2d39-4e6d-be99-dd6ef24cc66a | stats by count |
场景4 | clickhouse | SELECT count() FROM dist_log_test WHERE @message LIKE '%Trace%' AND @message LIKE '%gauge.apm_service_span%' |
场景4 | Doris | SELECT count() FROM log_test WHERE @message MATCH_ALL 'Trace gauge.apm_service_span' |
场景4 | ElasticSearch | Trace AND gauge.apm_service_span |stats by count |
场景5 | clickhouse | SELECT * FROM dist_log_test WHERE @message LIKE '%Error%' AND @message LIKE '%READ_ONLY%' |
场景5 | Doris | SELECT * FROM log_test WHERE @message MATCH_ALL 'Error READ_ONLY' |
场景5 | ElasticSearch | Error AND READ_ONLY |
场景6 | clickhouse | SELECT * FROM dist_log_test WHERE @message LIKE '%上海%' |
场景6 | Doris | SELECT * FROM log_test WHERE @message MATCH_ANY '上海' |
场景6 | ElasticSearch | 上海 |
查询结果如下所示:
数据库 | 场景1 | 场景2 | 场景3 | 场景4 | 场景5 | 场景6 | |
---|---|---|---|---|---|---|---|
clickhouse | 无干扰查询 有写入时查询 |
0.064 0.181 |
16.284 22.156 |
1.688 3.994 |
12.879 35.167 |
16.065 33.792 |
14.694 31.244 |
Doris | 无干扰查询 有写入时查询 |
7.08 9.78 |
2.56 3.28 |
0.09 0.37 |
0.48 0.75 |
0.33 0.37 |
0.48 0.56 |
elasticsearch | 无干扰查询 有写入时查询 |
9.09 9.25 |
1.54 6.22 |
0.556 1.68 |
0.296 3.36 |
0.248 0.828 |
0.49 1.09 |
在给出的6个场景中,除了场景1,ClickHouse凭借projection带来的预聚合加速明显更快之外,其余场景ClickHouse均慢于doris和ES,在全⽂检索的查询场景,落后近10倍以上。
得益于全⽂检索的加持,Doris与ES在模糊查询的场景下不分轩轾,各有千秋,但均比clickhouse快很多。
在数据库有⾼速写⼊时,三者都出现了⼀定的查询性能下降。但从实际效果来看,doris和ES因为本身就比较快,因此影响不是很大。ClickHouse的影响⽐较明显,在原本就⽐较慢的基础上,⼜有了近乎3倍的查询时间消耗。
在并发足够的情况下,clickhouse能轻松满足每秒100w+数据的写入。Doris写入性能相比之下要减半,并且不会随着并发数的增加而增加(并发数过多,反而写入更慢了)。但总体可以达到60w+每秒左右。三者之中,ES写入速度最慢,峰值仅能达到10w每秒左右。
在有大查询时,三者均对写入有一定影响,会造成写入性能下降25%左右。
压缩比方面,clickhouse和Doris均有比较优秀的压缩表现,而ES不仅没有压缩,反而数据有所膨胀。Doris相比与ES,有着近2倍的压缩比,而clickhouse更是达到了3倍之多。
查询方面,在聚合查询场景,clickhouse明显要更优秀,Doris和ES相对弱一些。
模糊查询场景,Doris与ES性能相当,都明显优于clickhouse。
本专栏知识点是通过<零声教育>的系统学习,进行梳理总结写下文章,对C/C++课程感兴趣的读者,可以点击链接,查看详细的服务:C/C++Linux服务器开发/高级架构师