- yolov5单目测距+速度测量+目标跟踪
cv_2025
YOLO目标跟踪人工智能计算机视觉机器学习图像处理opencv
要在YOLOv5中添加测距和测速功能,您需要了解以下两个部分的原理:单目测距算法单目测距是使用单个摄像头来估计场景中物体的距离。常见的单目测距算法包括基于视差的方法(如立体匹配)和基于深度学习的方法(如神经网络)。基于深度学习的方法通常使用卷积神经网络(CNN)来学习从图像到深度图的映射关系。单目测距代码单目测距涉及到坐标转换,代码如下:defconvert_2D_to_3D(point2D,R,
- PaddleDetection多目标跟踪报错MCMOTEvaluator is not exist, so the MOTA will be -INF
ATM006
目标检测
ppdet.metrics.mcmot_metricsWARNING:gt_filename'{}'ofMCMOTEvaluatorisnotexist,sotheMOTAwillbe-INFPaddleDetection/ppdet/metrics/mcmot_metrics.pyclassMCMOTEvaluator(object):def__init__(self,data_root,seq
- 计算机设计大赛 深度学习交通车辆流量分析 - 目标检测与跟踪 - python opencv
iuerfee
python
文章目录0前言1课题背景2实现效果3DeepSORT车辆跟踪3.1DeepSORT多目标跟踪算法3.2算法流程4YOLOV5算法4.1网络架构图4.2输入端4.3基准网络4.4Neck网络4.5Head输出层5最后0前言优质竞赛项目系列,今天要分享的是**基于深度学习得交通车辆流量分析**该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工
- 互联网加竞赛 多目标跟踪算法 实时检测 - opencv 深度学习 机器视觉
Mr.D学长
pythonjava
文章目录0前言2先上成果3多目标跟踪的两种方法3.1方法13.2方法24TrackingByDetecting的跟踪过程4.1存在的问题4.2基于轨迹预测的跟踪方式5训练代码6最后0前言优质竞赛项目系列,今天要分享的是深度学习多目标跟踪实时检测该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:4分更多资料,项目分享:ht
- 【目标跟踪】提供一种简单跟踪测距方法(c++)
读书猿
目标跟踪c++人工智能
文章目录一、前言二、c++代码2.1、Tracking2.2、KalmanTracking2.3、Hungarian2.4、TrackingInfo三、调用示例四、结果一、前言在许多目标检测应用场景中,完完全全依赖目标检测对下游是很难做出有效判断,如漏检。检测后都会加入跟踪进行一些判断或者说补偿。而在智能驾驶中,还需要目标位置信息,所以还需要测距。往期博客介绍了许多处理复杂问题的,而大部分时候我们
- 利用YOLOv8 pose estimation 进行 人的 头部等马赛克
shiter
大数据+AI赋能行业助力企业数字化转型最佳实践案例YOLO
文章大纲马赛克几种OpenCV实现马赛克的方法高斯模糊poseestimation定位并模糊:三角形的外接圆与膨胀系数实现实现代码实现效果参考文献与学习路径之前写过一个文章记录,怎么对人进行目标检测后打码,但是人脸识别有个问题是,很多人的背影,或者侧面无法识别出来人脸,那么我们就可以用姿态估计中的关键点信息进行补充,对人头进行打码,从而进一步的保护隐私信息。目标跟踪与检测后进行OpenCV人脸识别
- 吉格勒定理:你是一个有目标的人吗
Garey_8132
心理学家对哈佛大学的一批毕业生进行过一次人生目标跟踪调查。在调查中,研究人员发现:这些毕业生中有3%的人曾经确立了远大的目标;有10%的人有明确的短期目标;有60%的人目标不清晰,只求过好眼下的生活;还有27%的人几乎没有目标,完全是随遇而安。20年后,研究人员惊奇地发现:曾经树立过远大目标的3%的人,大都完成了自己的既定目标,事业有成;那10%的人虽没有卓尔不群,但也是社会中的上层人士;那60%
- 互联网加竞赛 基于深度学习的视频多目标跟踪实现
Mr.D学长
pythonjava
文章目录1前言2先上成果3多目标跟踪的两种方法3.1方法13.2方法24TrackingByDetecting的跟踪过程4.1存在的问题4.2基于轨迹预测的跟踪方式5训练代码6最后1前言优质竞赛项目系列,今天要分享的是基于深度学习的视频多目标跟踪实现该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/dancheng-senior/postg
- 第九篇【传奇开心果系列】Python的OpenCV技术点案例示例:目标跟踪
传奇开心果编程
Python库OpenCV技术点案例示例短博文pythonopencv目标跟踪
传奇开心果短博文系列系列短博文目录Python的OpenCV技术点案例示例系列短博文目录前言二、常用的目标跟踪功能、高级功能和增强跟踪技术介绍三、常用的目标跟踪功能示例代码四、OpenCV高级功能示例代码五、OpenCV跟踪目标增强技术示例代码六、归纳总结系列短博文目录Python的OpenCV技术点案例示例系列短博文目录前言目标跟踪:包括多目标跟踪、运动目标跟踪等功能。OpenCV是一个流行的计
- 【Visual Object Tracking】Learning notes
bryant_meng
CNN/Transformer读书笔记深度学习人工智能单目标跟踪VOT
DenseOpticalTracking:ConnectingtheDots参考学习来自:单目标跟踪Siamese系列网络:SiamFC、SiamRPN、one-shot跟踪、one-shotting单样本学习、DaSiamRPN、SiamRPN++、SiamMask单目标跟踪:跟踪效果/单目标跟踪:数据集处理/单目标跟踪:模型搭建/单目标跟踪:模型训练/单目标跟踪:模型测试单目标跟踪SiamMa
- 开源计算机视觉库OpenCV详解和实际运用案例
黑夜照亮前行的路
计算机视觉
开源计算机视觉库OpenCV是一个功能强大的工具,广泛应用于图像处理和计算机视觉领域。它包含许多优化算法,涵盖了图像处理、特征检测、目标跟踪等多个方面的功能。以下是对OpenCV的详细解释和一些实际应用案例。一、OpenCV的模块和功能OpenCV主要包含以下几个模块:核心功能模块:包含基本的图像处理和计算机视觉功能,如图像读取、显示、保存、变换等。图像处理模块:提供一系列图像处理算法,如滤波、边
- 室内定位系列
_49_
室内定位系列(一)——WiFi位置指纹(译)室内定位系列(二)——仿真获取RSS数据室内定位系列(三)——位置指纹法的实现(KNN)室内定位系列(四)——位置指纹法的实现(测试各种机器学习分类器)室内定位系列(五)——目标跟踪(卡尔曼滤波)室内定位系列(六)——目标跟踪(粒子滤波)
- 【目标跟踪】相机运动补偿
读书猿
目标跟踪自动驾驶目标检测
文章目录一、前言二、简介三、改进思路3.1、状态定义3.2、相机运动补偿3.3、iou和ReID融合3.4、改进总结四、相机运动补偿一、前言目前MOT(MultipleObjectTracking)最有效的方法仍然是Tracking-by-detection。今天给大家分享一篇论文BoT-SORT。论文地址,论文声称很牛*,各种屠榜,今天我们就来一探究竟。主要是分享论文提出的改进点以及分享在自己的
- 计算机视觉中的目标跟踪
小北的北
计算机视觉目标跟踪人工智能机器学习
从保护我们城市的监控系统到自动驾驶车辆在道路上行驶,目标跟踪已经成为计算机视觉中的一项基础技术。本文深入探讨了目标跟踪,探索了其基本原理、多样化的方法以及在现实世界中的应用。什么是目标跟踪?目标跟踪是深度学习在计算机视觉中广泛应用的重要应用之一。它指的是在动态环境中通过分析轨迹自动识别和跟踪物体,一旦初始位置已知。目标跟踪隐式地使用技术来识别和分类帧中的对象,并为每个对象关联一个唯一的标识。通常,
- 计算机视觉实战项目4(单目测距与测速+摔倒检测+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A_路径规划+行人车辆计数+动物识别等)
阿利同学
计算机视觉目标检测单目测距目标跟踪姿态识别实力分割摔倒检测
基于YOLOv5的无人机视频检测与计数系统摘要:无人机技术的快速发展和广泛应用给社会带来了巨大的便利,但也带来了一系列的安全隐患。为了实现对无人机的有效管理和监控,本文提出了一种基于YOLOv5的无人机视频检测与计数系统。该系统通过使用YOLOv5目标检测算法,能够准确地检测无人机,并实时计数其数量,提供给用户可视化的监控界面。原文链接:https://blog.csdn.net/ALiLiLiY
- 【目标跟踪】3D点云跟踪
读书猿
目标跟踪3d人工智能
文章目录一、前言二、代码目录三、代码解读3.1、文件描述3.2、代码框架四、关联矩阵计算4.1、ComputeLocationDistance4.2、ComputeDirectionDistance4.3、ComputeBboxSizeDistance4.4、ComputePointNumDistance4.5、ComputePointNumDistance4.6、result_distance五
- 计算机视觉实战项目3(图像分类+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A*路径规划+单目测距与测速+行人车辆计数等)
毕设阿力
计算机视觉目标检测目标跟踪
车辆跟踪及测距该项目一个基于深度学习和目标跟踪算法的项目,主要用于实现视频中的目标检测和跟踪。该项目使用了YOLOv5目标检测算法和DeepSORT目标跟踪算法,以及一些辅助工具和库,可以帮助用户快速地在本地或者云端上实现视频目标检测和跟踪!教程博客_传送门链接------->yolov5单目测距+速度测量+目标跟踪(算法介绍和代码)-CSDN博客yolov5deepsort行人/车辆(检测+计数
- DeepSORT算法实现车辆和行人跟踪计数和是否道路违规检测(代码+教程)
毕设阿力
算法
DeepSORT算法是一种用于目标跟踪的算法,它可以对车辆和行人进行跟踪计数,并且可以检测是否存在道路违规行为。该算法采用深度学习技术来提取特征,并使用卡尔曼滤波器来估计物体的速度和位置。DeepSORT算法通过首先使用目标检测算法来识别出场景中的车辆和行人,然后使用卷积神经网络(CNN)来提取物体的特征。接着,该算法使用余弦相似度来计算物体之间的相似度,并使用匈牙利算法来匹配跟踪器和检测器之间的
- yolov5 deepsort 行人/车辆(检测 +计数+跟踪+测距+测速)
毕设阿力
YOLO目标跟踪目标检测
YOLOv5和DeepSORT是两种常用的计算机视觉技术,它们可以结合使用以实现行人和车辆的目标检测和跟踪。这种技术在交通监控、智慧城市等领域中具有广泛的应用。YOLOv5是一种基于深度学习的目标检测算法,它可以实现高效的目标检测和分类。与传统的目标检测算法相比,YOLOv5具有更快的检测速度和更高的准确率。而DeepSORT则是一种基于多目标跟踪的算法,它可以对相邻帧之间的目标进行跟踪,并输出目
- [MOT Challenge]官方生成多目标跟踪算法性能评价指标结果,解决test数据集没有gt文件和官网注册问题
Bartender_Jill
目标跟踪人工智能计算机视觉
文章目录⭐⭐⭐内容修正前言一、账号注册1.不要用QQ或163或gmail邮箱2.正常注册流程二、上传测试结果的流程1.使用步骤总结⭐⭐⭐内容修正我先前于2023/4/5日的时候在文章里提到:“提交到官网的文件需要包含测试后的训练集结果和测试后的测试集结果”,该结论经过测试后发现有误。个人于2023/12/8日在评论区的提醒下对MOTChallenge的内容提交进行了重新测试,发现提交到官网的文件并
- 数字信号处理7——点到向量的距离
注释远方
数字信号处理算法
目录一、前言二、点到线段的最短距离——向量法三、点到直线的最短距离——直线法四、点到直线最短距离——向量法一、前言其实在工程应用中很多情况下计算点到直线或者点到线段的距离,比如在unity3d游戏软件设计中计算任意形状路径起点和终点连线距离最远的点,比如用于雷达聚类后在多目标跟踪算法中计算哪个sensor距离track最近,另外还需要知道要计算的点位于直线的哪一侧,这些计算在游戏开发或者数字信号后
- 深度视觉目标跟踪进展综述-论文笔记
pzb19841116
计算机视觉目标跟踪人工智能计算机视觉
中科大学报上的一篇综述,总结得很详细,整理了相关笔记。1引言目标跟踪旨在基于初始帧中指定的感兴趣目标(一般用矩形框表示),在后续帧中对该目标进行持续的定位。基于深度学习的跟踪算法,采用的框架包括相关滤波器、分类式网络、双路网络等。处理跟踪任务的角度,分为基于匹配思路的双路网络和基于二分类的辨别式跟踪器。最初的深度跟踪算法聚焦于相关滤波器,通过深度学习的特征+相关滤波器实现。基于双路网络跟踪算法那,
- FastDeploy项目简介,使用其进行(图像分类、目标检测、语义分割、文本检测|orc部署)
万里鹏程转瞬至
深度学习python库使用目标检测深度学习模型部署
FastDeploy是一款全场景、易用灵活、极致高效的AI推理部署工具,支持云边端部署。提供超过160+Text,Vision,Speech和跨模态模型开箱即用的部署体验,并实现端到端的推理性能优化。包括物体检测、字符识别(OCR)、人脸、人像扣图、多目标跟踪系统、NLP、StableDiffusion文图生成、TTS等几十种任务场景,满足开发者多场景、多硬件、多平台的产业部署需求。1、FastD
- 基于卡尔曼滤波的平面轨迹优化
点PY
机器人导航定位c++卡尔曼滤波
文章目录概要卡尔曼滤波代码主函数代码CMakeLists.txt概要在进行目标跟踪时,算法实时测量得到的目标平面位置,是具有误差的,连续观测,所形成的轨迹如下图所示,需要对其进行噪声滤除。这篇博客将使用卡尔曼滤波,对轨迹进行优化。优化的结果为黄色线。卡尔曼滤波代码#include
- RT-DETR原理与简介(干翻YOLO的最新目标检测项目)
毕设阿力
YOLO目标检测人工智能
RT-DETR(Real-TimeDetection,Embedding,andTracking)是一种基于Transformer的实时目标检测、嵌入和跟踪模型。它通过结合目标检测、特征嵌入和目标跟踪三个任务,实现了高效准确的实时目标识别和跟踪。RT-DETR的核心思想是将目标检测和目标跟踪这两个传统独立的任务进行统一建模,并利用Transformer网络进行特征提取和关联学习。相比于传统的两阶段
- 基于多传感器的后融合的目标跟踪如何实现?都有哪些基本流程?
自动驾驶之心
目标跟踪人工智能计算机视觉机器学习
点击下方卡片,关注“自动驾驶之心”公众号ADAS巨卷干货,即可获取讲师:Edison课程内容:基于多传感器后融合的目标跟踪(0.课前导学1.自动驾驶中的融合跟踪)笔记作者:王汝嘉0.课前导学0.1主讲人介绍0.2课程关键词0.3学习资料推荐1.自动驾驶中的融合跟踪1.1自动驾驶中的感知任务1.2多传感器融合的主要方法1.3多传感器融合跟踪的基本流程1.4多目标跟踪的数据集与性能指标以上内容均出自《
- 【目标跟踪】多相机环视跟踪
读书猿
目标跟踪人工智能自动驾驶
文章目录一、前言二、流程图三、实现原理3.1、初始化3.2、输入3.3、初始航迹3.4、航迹预测3.5、航迹匹配3.6、输出结果四、c++代码五、总结一、前言多相机目标跟踪主要是为了实现360度跟踪。单相机检测存在左右后的盲区视野。在智能驾驶领域,要想靠相机实现无人驾驶,相机必须360度无死角全覆盖。博主提供一种非深度学习方法,采用kalman滤波+匈牙利匹配方式实现环视跟踪。有兴趣可以参考往期【
- 互联网加竞赛 基于机器视觉的车道线检测
Mr.D学长
pythonjava
文章目录1前言2先上成果3车道线4问题抽象(建立模型)5帧掩码(FrameMask)6车道检测的图像预处理7图像阈值化8霍夫线变换9实现车道检测9.1帧掩码创建9.2图像预处理9.2.1图像阈值化9.2.2霍夫线变换最后1前言优质竞赛项目系列,今天要分享的是基于深度学习的视频多目标跟踪实现该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/d
- Unity之Cinemachine教程
passionyxt
Unityunity游戏引擎TimelineCinemachine相机跟随轨迹相机拍摄相机
前言Cinemachine是Unity引擎的一个高级相机系统,旨在简化和改善游戏中的相机管理。Cinemachine提供了一组强大而灵活的工具,可用于创建令人印象深刻的视觉效果,使开发人员能够更轻松地掌控游戏中的摄像机行为。主要功能和特性包括:1.虚拟摄像机系统:Cinemachine引入了虚拟摄像机的概念,允许开发人员使用相机组件的虚拟实例,而不必直接操作实际摄像机。2.目标跟踪:Cinemac
- 『论文阅读|2024 WACV 多目标跟踪Deep-EloU|纯中文版』
Dymc
论文深度学习深度学习
论文题目:IterativeScale-UpExpansionIoUandDeepFeaturesAssociationforMulti-ObjectTrackinginSports论文特点:作者提出了一种迭代扩展的ExpansionIoU和深度特征关联方法Deep-EIoU,用于体育场景中的多目标跟踪,旨在解决非线性、不规则运动、相似外观的在线短时多目标跟踪问题,实验表明,提出的方法对于提高跟踪
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
 
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
 
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key