提高数据库的性能,索引是物美价廉的东西了。不用加内存,不用改程序,不用调sql,只要执行正确的 create index
,查询速度就可能提高成百上千倍。但是天下没有免费的午餐,查询速度的提高是以插入、更新、删除的速度为代价的,这些写操作,增加了大量的IO。所以它的价值,在于提高一个海量数据的检索速度。
常见的索引分为:
主键索引(primary key)
;唯一键索引(unique)
;普通索引(index)
;全文索引(fulltext)
;我们先来看看,加入没有索引,在查询的时候可能出现什么问题?
案例
海量表
,在查询的时候,看看没有索引时有什么问题?drop database if exists `bit_index`;
create database if not exists `bit_index` default character set utf8;
use `bit_index`;
-- 构建一个8000000条记录的数据
-- 构建的海量表数据需要有差异性,所以使用存储过程来创建
-- 产生随机字符串
delimiter $$
create function rand_string(n INT)
returns varchar(255)
begin
declare chars_str varchar(100) default
'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ';
declare return_str varchar(255) default '';
declare i int default 0;
while i < n do
set return_str=concat(return_str,substring(chars_str,floor(1+rand()*52),1));
set i = i + 1;
end while;
return return_str;
end $$
delimiter ;
-- 产生随机数字
delimiter $$
create function rand_num()
returns int(5)
begin
declare i int default 0;
set i = floor(10+rand()*500);
return i;
end $$
delimiter ;
-- 创建存储过程,向雇员表添加海量数据
delimiter $$
create procedure insert_emp(in start int(10),in max_num int(10))
begin
declare i int default 0;
set autocommit = 0;
repeat
set i = i + 1;
insert into EMP values ((start+i)
,rand_string(6),'SALESMAN',0001,curdate(),2000,400,rand_num());
until i = max_num
end repeat;
commit;
end $$
delimiter ;
-- 雇员表
create table `EMP`(
`empno` int(6) unsigned zerofill NOT NULL COMMENT '雇员编号',
`ename` varchar(10) DEFAULT NULL COMMENT '雇员姓名',
`job` varchar(9) DEFAULT NULL COMMENT '雇员职位',
`mgr` int(4) unsigned zerofill DEFAULT NULL COMMENT '雇员领导编号',
`hiredate` datetime DEFAULT NULL COMMENT '雇佣时间',
`sal` decimal(7,2) DEFAULT NULL COMMENT '工资月薪',
`comm` decimal(7,2) DEFAULT NULL COMMENT '奖金',
`deptno` int(2) unsigned zerofill DEFAULT NULL COMMENT '部门编号'
);
-- 执行存储过程,添加8000000条记录
call insert_emp(100001, 8000000);
998877
的员工;select * from EMP where empno=998877;
这里我们可以清楚地看到耗时为7.59
秒。此时还是在仅有本机一人查询的情况下,在实际项目中,若同时有1000个人并发查询,很有可能死机。
索引能够有效地解决这个问题,我们先看一下效果。
为员工表创建索引
;alter table EMP add index(empno);
select * from EMP where empno=123456;
可以看出,此时查询时间不到0.01
秒。
create table if not exists user(
id int primary key,
age int not null,
name varchar(16) not null
);
show create table user \G
我们这里就不再详细介绍磁盘,我们直接使用结论:
512
字节;512
字节。单次IO为512字节太小,IO单位小,意味着读取同样多的数据内容,需要进行多次的磁盘访问,会带来效率的降低;4KB
。而MySQL作为一款应用软件,可以想象成特殊的文件系统。他有着更高的IO场景,所以,为了提高基本的IO效率,MySQL进行IO的基本单位是16KB
。
show global status like 'innodb_page_size';
也就是说,磁盘这个硬件设备的基本单位是 512
字节,而 MySQL InnoDB
引擎使用16KB
进行IO交互。即, MySQL 和磁盘进行数据交互的基本单位是16KB
。这个基本数据单元,在 MySQL 这里叫做page
。
为何MySQL和磁盘进行IO交互的时候,要采用Page的方案进行交互呢?用多少,加载多少不香吗?
如上面的5条记录,如果MySQL要查找id=2的记录,第一次加载id=1,第二次加载id=2,一次一条记录,那么就需要2次IO。如果要找id=5,那么就需要5次IO。
但,如果这5条(或者更多)都被保存在一个Page中(16KB,能保存很多记录),那么第一次IO查找id=2的时候,整个Page会被加载到MySQL的Buffer Pool中,这里完成了一次IO。但是往后如果在查找id=1,3,4,5等,完全不需要进行IO了,而是直接在内存中进行了。所以,就在单Page里面,大大减少了IO的次数。
你怎么保证,用户一定下次找的数据,就在这个Page里面?我们不能严格保证,但是有很大概率,因为有局部性原理
。
往往IO效率低下的最主要矛盾不是IO单次数据量的大小,而是IO的次数
。
MySQL 中要管理很多数据表文件,而要管理好这些文件,就需要 先描述,在组织 ,我们目前可以简单理解成一个个独立文件是有一个或者多个Page构成的。
不同的 Page ,在 MySQL 中,都是16KB ,使用prev
和 next
构成双向链表因为有主键的问题, MySQL 会默认按照主键给我们的数据进行排序,从上面的Page内数据记录可以看出,数据是有序且彼此关联的。
为什么数据库在插入数据时要对其进行排序呢?我们按正常顺序插入数据不是也挺好的吗?
插入数据时排序的目的,就是优化查询的效率
。页内部存放数据的模块,实质上也是一个链表的结构,链表的特点也就是增删快,查询修改慢,所以优化查询的效率是必须的。
正是因为有序,在查找的时候,从头到后都是有效查找,没有任何一个查找是浪费的,而且,如果运气好,是可以提前结束查找过程的。
通过上面的分析,我们知道,上面页模式
中,只有一个功能,就是在查询某条数据的时候直接将一整页的数据加载到内存中,以减少硬盘IO次数,从而提高性能。但是,我们也可以看到,现在的页模式内部,实际上是采用了链表的结构,前一条数据指向后一条数据,本质上还是通过数据的逐条比较来取出特定的数据。
如果有1千万条数据,一定需要多个Page来保存1千万条数据,多个Page彼此使用双链表链接起来,而且每个Page内部的数据也是基于链表的。那么,查找特定一条记录,也一定是线性查找。这效率也太低了。
我们在看《谭浩强C程序设计》这本书的时候,如果我们要看<指针章节>,找到该章节有两种做法:
同时,查找目录的方案,可以顺序找,不过因为目录肯定少,所以可以快速提高定位。本质上,书中的目录,是多花了纸张的,但是却提高了效率所以,目录,是一种“空间换时间的做法
”。
针对上面的单页Page,我们能否也引入目录呢?当然可以。
那么当前,在一个Page内部,我们引入了目录。比如,我们要查找id=4记录,之前必须线性遍历4次,才能拿到结果。现在直接通过目录2[3],直接进行定位新的起始位置,提高了效率。
现在我们可以再次正式回答上面的问题了,为何通过键值 MySQL 会自动排序?
MySQL 中每一页的大小只有 16KB
,单个Page大小固定,所以随着数据量不断增大, 16KB 不可能存下所有的数据,那么必定会有多个页来存储数据。
在单表数据不断被插入的情况下, MySQL 会在容量不足的时候,自动开辟新的Page来保存新的数据,然后通过指针的方式,将所有的Page组织起来。
需要注意,上面的图,是理想结构,大家也知道,目前要保证整体有序,那么新插入的数据,不一定会在新Page上面,这里仅仅做演示。
这样,我们就可以通过多个Page遍历,Page内部通过目录来快速定位数据。可是,貌似这样也有效率问题,在Page之间,也是需要 MySQL 遍历的,遍历意味着依旧需要进行大量的IO,将下一个Page加载到内存,进行线性检测。这样就显得我们之前的Page内部的目录,有点杯水车薪了。
那么如何解决呢?解决方案,其实就是我们之前的思路,给Page也带上目录
。
使用一个目录项来指向某一页,而这个目录项存放的就是将要指向的页中存放的最小数据的键值。
和页内目录不同的地方在于,这种目录管理的级别是页,而页内目录管理的级别是行。
其中,每个目录项的构成是:键值+指针
。图中没有画全。
存在一个目录页来管理页目录,目录页中的数据存放的就是指向的那一页中最小的数据。有数据,就可通过比较,找到该访问那个Page,进而通过指针,找到下一个Page。
其实目录页的本质也是页,普通页中存的数据是用户数据,而目录页中存的数据是普通页的地址。
可是,我们每次检索数据的时候,该从哪里开始呢?虽然顶层的目录页少了,但是还要遍历啊?不用担心,可以在加目录页。
如图可以直观地看出,这就是B+
树。至此,我们已经给我们的表user构建完了主键索引。
随便找一个id=?我们发现,现在查找的Page数一定减少了,也就意味着IO次数减少了,那么效率也就提高了。
InnoDB 在建立索引结构来管理数据的时候,其他数据结构为何不行?
链表:线性遍历;
二叉搜索树:退化问题,可能退化成为线性结构;
AVL &&红黑树:虽然是平衡或者近似平衡,但是毕竟是二叉结构,相比较多阶B+,意味着树整体过高,大家都是自顶向下找,层高越低,意味着系统与硬盘更少的IO Page交互;
Hash:官方的索引实现方式中, MySQL 是支持HASH的,不过 InnoDB 和 MyISAM 并不支持.Hash跟进其算法特征,决定了虽然有时候也很快(O(1)),不过,在面对范围查找就明显不行。
B树
B+树
两种树的区别在于:
B+叶子节点,全部相连
,而B没有;为何选择B+树
节点不存储data,这样一个节点就可以存储更多的key。可以使得树更矮,所以IO操作次数更少
;MyISAM 引擎同样使用B+树作为索引结果,叶节点的data域存放的是数据记录的地址。下图为 MyISAM表的主索引, Col1
为主键。
其中, MyISAM 最大的特点是,将索引Page和数据Page分离,也就是叶子节点没有数据,只有对应数据的地址。
相较于 InnoDB 索引, InnoDB 是将索引和数据放在一起的。
create database myisam_test;
use myisam_test;
create table mytest( id int primary key, name varchar(11) not null )engine=MyISAM;
ls /var/lib/mysql/myisam_test/ -l
其中, MyISAM 这种用户数据与索引数据分离的索引方案,叫做非聚簇索引
。
create database innodb_test;
use innodb_test;
create table mytest( id int primary key, name varchar(11) not null )engine=InnoDB;
ls /var/lib/mysql/innodb_test/ -l
其中, InnoDB 这种用户数据与索引数据在一起索引方案,叫做聚簇索引
;
当然, MySQL 除了默认会建立主键索引外,我们用户也有可能建立按照其他列信息建立的索引,一般这种索引可以叫做辅助(普通)索引。
对于 MyISAM ,建立辅助(普通)索引和主键索引没有差别,无非就是主键不能重复,而非主键可重复。
下图就是基于 MyISAM 的 Col2 建立的索引,和主键索引没有差别。
同样, InnoDB 除了主键索引,用户也会建立辅助(普通)索引,我们以上表中的 Col3 建立对应的辅助索引如下图:
可以看到, InnoDB 的非主键索引中叶子节点并没有数据,而只有对应记录的key值。
所以通过辅助(普通)索引,找到目标记录,需要两遍索引:首先检索辅助索引获得主键,然后用主键到主索引中检索获得记录。这种过程,就叫做回表查询为何 InnoDB 针对这种辅助(普通)索引的场景,不给叶子节点也附上数据呢?原因就是太浪费空间了。
-- 在创建表的时候,直接在字段名后指定 primary key
create table user1(id int primary key, name varchar(30));
-- 在创建表的最后,指定某列或某几列为主键索引
create table user2(id int, name varchar(30), primary key(id));
create table user3(id int, name varchar(30));
-- 创建表以后再添加主键
alter table user3 add primary key(id);
主键索引的特点
最多有一个主键索引
,当然可以使符合主键;不能为null
,且不能重复;-- 在表定义时,在某列后直接指定unique唯一属性。
create table user4(id int primary key, name varchar(30) unique);
-- 创建表时,在表的后面指定某列或某几列为unique
create table user5(id int primary key, name varchar(30), unique(name));
create table user6(id int primary key, name varchar(30));
alter table user6 add unique(name);
唯一索引的特点
可以有多个唯一索引
;create table user8(id int primary key,
name varchar(20),
email varchar(30),
index(name) --在表的定义最后,指定某列为索引
);
create table user9(id int primary key, name varchar(20), email
varchar(30));
alter table user9 add index(name); --创建完表以后指定某列为普通索引
create table user10(id int primary key, name varchar(20), email
varchar(30));
-- 创建一个索引名为 idx_name 的索引
create index idx_name on user10(name);
普通索引的特点
当对文章字段或有大量文字的字段进行检索时,会使用到全文索引。MySQL提供全文索引机制,但是有要求,要求表的存储引擎必须是MyISAM,而且默认的全文索引支持英文,不支持中文。如果对中文进行全文检索,可以使用sphinx的中文版(coreseek)。
CREATE TABLE articles (
id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
title VARCHAR(200),
body TEXT,
FULLTEXT (title,body)
)engine=MyISAM;
INSERT INTO articles (title,body) VALUES
('MySQL Tutorial','DBMS stands for DataBase ...'),
('How To Use MySQL Well','After you went through a ...'),
('Optimizing MySQL','In this tutorial we will show ...'),
('1001 MySQL Tricks','1. Never run mysqld as root. 2. ...'),
('MySQL vs. YourSQL','In the following database comparison ...'),
('MySQL Security','When configured properly, MySQL ...');
查询有没有database数据
如果使用如下查询方式,虽然查询出数据,但是没有使用到全文索引;
select * from articles where body like '%database%';
explain select * from articles where body like '%database%'\G
SELECT * FROM articles WHERE MATCH (title,body) AGAINST ('database');
show keys from 表名;
show index from 表名;
desc 表名;
alter table 表名 drop primary key;
alter table 表名 drop index 索引名;
drop index 索引名 on 表名