- 机器学习----奥卡姆剃刀定律
AI自修室
计算机视觉面试题机器学习人工智能
奥卡姆剃刀定律(Occam’sRazor)是一条哲学原则,通常表述为“如无必要,勿增实体”(Entitiesshouldnotbemultipliedbeyondnecessity)或“在其他条件相同的情况下,最简单的解释往往是最好的”。这一原则由14世纪的英格兰逻辑学家和神学家威廉·奥卡姆提出。它提倡在解释现象时,应尽量减少假设和复杂性,优先选择最简单的解释。奥卡姆剃刀定律对机器学习模型优化的启
- 组合优于继承,为什么不推荐使用继承?
骆驼整理说
Java基础java开发语言
继承是面向对象的四大特性之一,用来表示类之间的is-a关系,可以解决代码复用的问题。虽然继承有诸多作用,但继承层次过深、过复杂,也会影响到代码的可维护性。假设我们要设计一个关于鸟的类。将“鸟”这样一个抽象的事物概念,定义为一个抽象类AbstractBird。所有更细分的鸟,比如麻雀、鸽子、乌鸦等,都继承这个抽象类。大部分鸟都会飞,那可不可以在AbstractBird抽象类中,定义一个fly()方法
- 《数字围城与看不见的手:网络安全的经济哲学简史》
安全
(楔子:从青铜铸币到数据流)公元前7世纪,吕底亚人将琥珀金铸成硬币,货币流动催生了人类的安全难题——如何防止赝品渗透经济血脉。2023年,某跨国电商平台因API接口漏洞,每秒有317个虚拟账户在暗网交易数字资产。这组跨越时空的数据揭示永恒定律:财富形态决定安全范式,防护技术永远比攻击手段晚进化0.618个黄金分割周期。一、数据资本论:生产要素的惊险跳跃当亚当·斯密凝视别针工厂时,他看到的劳动分工正
- 嵌入式硬件篇---数字电子技术中的逻辑运算
Ronin-Lotus
嵌入式硬件篇嵌入式硬件数字电子技术逻辑运算
、文章目录前言一、基本逻辑运算1.与运算(AND)符号真值表功能应用2.或运算(OR)符号真值表功能应用3.非运算(NOT符号真值表功能应用4.异或运算(XOR)符号真值表功能应用5.同或运算(XNOR)符号真值表功能应用二、组合逻辑运算1.与非(NAND)符号真值表特点应用2.或非(NOR)符号真值表特点应用3.三态逻辑(Tri-state)符号功能应用三、逻辑运算的扩展规则1.德摩根定律(De
- 第二个问题-阿西莫夫三定律的理解
释迦呼呼
AI一千问人工智能
阿西莫夫三定律是由科幻小说家艾萨克·阿西莫夫提出的机器人伦理准则,旨在确保机器人(或人工智能,AI)在与人类互动时,优先保护人类的安全和利益。这三个定律分别是:机器人不得伤害人类,或坐视人类受到伤害。机器人必须服从人类的命令,除非这些命令与第一定律相冲突。机器人必须保护自己,除非这种保护与前两个定律相冲突。以下从几个方面详细探讨如何理解这一定律:1.阿西莫夫三定律的本质:伦理框架而非技术规范阿西莫
- CPU多级缓存结构以及缓存一致性协议MESI
又菜又爱玩٩( ö̆ ) و
并发编程缓存硬件架构
CPU多级缓存结构现代CPU分为物理核和逻辑核,比如我们日常办公电脑常见的4核8线程,就是指的4个物理核、8个逻辑核。超线程的技术使得一个物理核可以同时做两件事,也就是执行两个线程,但是能真正执行两个线程的场景很少。Java中API获取的核数,就是指的逻辑核。CPU在摩尔定律的指导下以每18个月翻一番的速度在发展,然而内存和硬盘的发展速度远远不及CPU。现代CPU为了提升执行效率,减少CPU与内存
- 符号学习初学代码——从开普勒第三定律到万有引力定律
Merci美滋滋
学习python机器学习
备注PINN——physicsinformedneuralnetworkSR——symbolicregression代码详细分析见评论区链接一、SR_testimportnumpyasnpT=np.array([0.241,0.615,1,1.881,11.862]).reshape(-1,1)R=np.array([0.381,0.723,1,1.524,5.023]).reshape(-1,1
- Beyond Scaling Laws: Understanding Transformer Performance with Associative Memory
UnknownBody
LLMDailytransformer深度学习人工智能语言模型
本文是LLM系列文章,针对《BeyondScalingLaws:UnderstandingTransformerPerformancewithAssociativeMemory》的翻译。超越缩放定律:用联想记忆理解Transformer性能摘要1引言2相关工作3模型4新的能量函数5交叉熵损失6实验结果7结论摘要增大Transformer模型的大小并不总是能够提高性能。这种现象不能用经验缩放定律来解
- 什么是Scaling Laws(缩放定律);DeepSeek的Scaling Laws
ZhangJiQun&MXP
教学2024大模型以及算力2021论文人工智能自然语言处理神经网络语言模型深度学习
什么是ScalingLaws(缩放定律)ScalingLaws(缩放定律)在人工智能尤其是深度学习领域具有重要意义,以下是相关介绍及示例:定义与内涵ScalingLaws主要描述了深度学习模型在规模(如模型参数数量、训练数据量、计算资源等)不断扩大时,模型性能与这些规模因素之间的定量关系。它表明,在一定条件下,模型的性能会随着模型规模的增加而以某种可预测的方式提升,通常表现为模型的损失函数值随模型
- 斜面摩擦系数测量仪产品特点及参数介绍
milaiyiqi
测试工具功能测试
COF-05斜面摩擦系数仪是一种专门用于测量物体与表面之间摩擦系数的精密设备。它通过模拟不同倾斜角度下的滑动情况,来计算两个接触面之间的摩擦力大小,进而得出摩擦系数。这项技术在材料科学、工程学以及质量控制领域有着广泛的应用。工作原理斜面摩擦系数仪的基本工作原理基于牛顿力学定律,尤其是重力和摩擦力的相互作用。测试时,将待测样品放置于一个可以调节角度的斜面上,然后逐渐增加斜面的角度直到样品开始滑动。根
- 《电磁学》第十二章
请向我看齐
电机电控电机电磁
以下是《电磁学》第十二章的常见内容,以张三慧编著的《大学物理学电磁学(第3版)》为例:12.1电荷电荷是一种物质属性,有正、负电荷两类,同性相斥、异性相吸。起电方法包括摩擦起电,即电荷从一物体转移到另一物体;感应起电,即电荷在同一物体上移动。电荷守恒定律表明电荷不能创造,也不会自行消失,只能从一个物体转移到另一个物体,在整个过程中电荷的代数和守恒。电荷的量子化指物体带电量是基本电荷的整数倍。电荷具
- 【第15章:量子深度学习与未来趋势—15.1 量子计算基础与量子机器学习的发展背景】
再见孙悟空_
#【深度学习・探索智能核心奥秘】机器翻译自然语言处理计算机视觉量子计算人工智能深度学习机器学习
想象一下,你正在用ChatGPT生成一篇小说,突然它卡在"主角穿越虫洞"的情节上——这不是因为想象力枯竭,而是传统计算机的晶体管已经烧到冒烟。当前AI大模型的参数规模每4个月翻一番,但摩尔定律的终结让经典计算机的算力增长首次跟不上AI的进化速度。这时候,量子计算带着它的"超能力"登场了:1台50量子位的量子计算机,处理某些问题的速度可达超级计算机的1亿倍。这场算力革命,正在改写深度学习的游戏规则。
- CES 2025 NVIDIA Project DIGITS 与更多突破性发布全解析
新加坡内哥谈技术
人工智能科技生活自动化深度学习
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/观看视频B站链接:【年尾特献:AI的规模定律(scalinglaw)和芯片业达到瓶颈了吗
- 基于泰勒展开改进的物理信息神经网络
天天酷科研
物理信息网络PINN神经网络人工智能深度学习
基于泰勒展开改进的物理信息神经网络一、引言1.1、研究背景和意义物理信息神经网络(PINN)作为一种结合物理模型和数据驱动的新型神经网络模型,近年来在科学计算和工程应用中展示了广泛的应用前景。PINN通过将物理定律嵌入到神经网络的损失函数中,能够在缺乏大量数据的情况下,有效地解决复杂的物理问题。这种方法不仅提高了模型的预测准确性,还增强了模型的泛化能力和解释性,因此在流体力学、材料科学、地球科学等
- 大语言模型多代理协作(MACNET)
ZhangJiQun&MXP
2021AIpython教学2021论文语言模型人工智能自然语言处理
大语言模型多代理协作(MACNET)ScalingLarge-Language-Model-basedMulti-AgentCollaboration提出多智能体协作网络(MACNET),以探究多智能体协作中增加智能体数量是否存在类似神经缩放定律的规律。研究发现了小世界协作现象和协作缩放定律,为LLM系统资源预测和优化提供了思路。研究背景与动机:大语言模型(LLMs)因神经缩放定律展现出强大能力,
- 2025年2月第一周国内外科技资讯精选(软件工程与Python领域)
虫洞没有虫
科技资讯\好文分享科技python开发语言
一、AI与Python工具链的深度整合OpenAI与谷歌的模型竞赛OpenAI推出的免费推理模型o3-mini在数学代码生成和物理模拟领域表现突出,尤其擅长生成符合物理定律的代码(如动态Shader、游戏逻辑),开发者可通过PythonAPI快速集成其能力13。谷歌的Gemini2.0Pro模型支持调用谷歌搜索工具和执行代码,显著提升了Python在数据驱动型AI应用(如自动化科研分析)中的开发效
- 『大模型笔记』国外大神对DeepSeek R1的科普!
AI大模型前沿研究
大模型笔记笔记DeepseekdeepseekR1Deepseekv3GPTO1GPTO3
国外大神对DeepSeekR1的科普!文章目录一、Explainer:What'sR1&EverythingElse?时间线推理与Agent推理模型≠Agent推理为什么重要推理需要变得廉价R1的重要意义AI的发展走势预训练规模扩张的路走不通了推理阶段的规模定律缩小模型体量(新的规模定律?)强化学习(新的规模定律?)模型蒸馏(新的规模定律?)2025年的预测地缘政治:Distealing结论讨论二
- 2025年Python领域最新国际动态与技术趋势解析(截至2025年2月)
虫洞没有虫
Python资讯python开发语言
一、AI与Python的深度融合:从模型部署到开发工具OpenAI与谷歌的模型竞赛OpenAI近期推出的免费推理模型o3-mini在数学代码生成和物理模拟领域表现突出,尤其在Python生态中,开发者可通过API快速集成其能力。例如,生成符合物理定律的代码(如动态Shader或游戏逻辑)时,Python因其简洁性成为首选调用语言。而谷歌的Gemini2.0系列(如Pro版本)支持调用谷歌搜索工具和
- 惯性制导 科普
不知道是谁2
惯性制导imugps制导技术
惯性制导是一种导航技术,它利用物体保持其运动状态的特性,即惯性,来进行导航。这种导航系统的核心组成部分包括加速度计,用于测量设备本身的加速度,以及积分器,它们结合地球的地心引力数据来计算出方向和速度。惯性制导系统不需要外部信号(如GPS),因此即便在卫星信号受阻或干扰的地方也能工作,常用于飞机、导弹、舰船等需要自主导航的场合。它的工作原理基于牛顿第一定律——物体会保持匀速直线运动,除非受到外力作用
- 数学与光学:光的传播和干涉的数学描述
AI天才研究院
计算ChatGPTDeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《数学与光学:光的传播和干涉的数学描述》关键词:光学,数学模型,光传播,干涉,波动方程摘要:本文旨在深入探讨光学中光的传播和干涉现象的数学描述。我们将从基础概念出发,逐步引入光的传播路径分析、斯涅尔定律和光的衍射现象,再到干涉原理和数学模型,最后探讨特殊情况下的干涉现象及其应用。文章将结合数学公式和编程实例,提供清晰的逻辑推理和分析过程,以帮助读者更好地理解和掌握这些核心概念。目录大纲《数学与光学
- Uboot中外存MMC(sd/iNand等)驱动架构代码简单分析
IT悟物穷理IT
uboot和系统移植
2020-7-519:50北京晴屋内开空调不知道外面啥情况一天没出屋外面貌似闷热吧!本文仅作为技术积累,方便日后查阅!作家格拉德威尔在《异类》一书中指出:“人们眼中的天才之所以卓越非凡,并非天资超人一等,而是付出了持续不断的努力。1万小时的锤炼是任何人从平凡变成超凡的必要条件”。他将此称为“一万小时定律”。要成为某个领域的专家,需要10000小时,按比例计算就是:如果每天工作八个小时,一周工作五天
- 1、架构-服务架构演进史
大树~~
架构架构微服务java
架构演进史1.原始分布式时代这个阶段发生在20世纪70年代末到80年代初,当时的计算机科学从以大型机为主转向以微型机为主。在这个时期,由于单台计算机的处理能力有限,计算机科学家开始尝试使用多台计算机共同协作来支撑更大的软件系统。这些早期的分布式尝试,包括惠普的网络运算架构、卡内基·梅隆大学的AFS(AndrewFileSystem)等,都是对分布式计算的初步探索。2.单体系统时代随着摩尔定律的实现
- 齐普夫定律(Zipf‘s Law)
彬彬侠
自然语言处理齐普夫定律Zipf’sLaw单词频率排名PythonNLP自然语言处理
齐普夫定律(Zipf’sLaw)1.定义齐普夫定律(Zipf’sLaw)是一种经验法则,描述了单词频率分布在自然语言中的规律。它指出,在一篇文本或一个语料库中,单词的出现频率fff与其频率排名rrr之间存在如下关系:f∝1rsf\propto\frac{1}{r^s}f∝rs1其中:fff是单词的出现频率。rrr是单词的排名(按照频率从高到低排序)。sss是一个常数,通常在自然语言中接近1(即s≈
- 点、线、圆、矩形、抛物线的类定义_德语词汇-数学类
weixin_39818662
点线圆矩形抛物线的类定义
德语词汇-数学类定理derTheorem公理dasAxiom定义dieDefinition法则dasGesetz定律dieRegel公式dieformel原理dasPrinzip性质dieBeschaffenheit加plus减minus乘mal除durch和dieSumme差derRest积dasProdukt商derQuotient比例dasVerhaeltnis符号dasZeichen整数d
- 物理运动模拟基础
lang_dye
物理物理物理模拟
牛顿定律第一定律:若物体所受外力为0,则物体保持静止或匀速直线运动第二定律:物体的动量随时间的变化率与受力成正比。F=dpdt=mdvdt=maF=\frac{dp}{dt}=\frac{mdv}{dt}=maF=dtdp=dtmdv=ma,一般物理模拟使用这个公式第三定律:相互作用的两个物体之间的作用力和反作用力大小想等,方向相反,作用在同一直线上。匀加速运动设物体的质量为m,初始速度为v0,当
- 全局光照:物理基础教程_2024-07-21_16-33-18.Tex
chenjj4003
游戏开发2性能优化vrffmpeg前端javascript
全局光照:物理基础教程光照基础理论光线与物质的相互作用光线与物质的相互作用是全局光照研究的核心之一。当光线遇到物体表面时,会发生反射、折射或被吸收。这些现象决定了我们如何感知物体的颜色和质感。反射光线在物体表面的反射遵循反射定律,即入射角等于反射角。反射可以分为镜面反射和漫反射两种类型。镜面反射镜面反射发生在光滑的表面上,光线以相同的角度反射回去。例如,镜子或金属表面的反射。漫反射漫反射发生在粗糙
- 【大模型入门必看】LLM大语言模型导读
古-月
LLM大语言模型
前言在规模扩展定律(ScalingLaws)被证明对语言模型有效之后,研究者构建出了许多大语言模型。尤其是2022年底面向普通消费者的ChatGPT模型的出现,正式标志着自然语言处理进入大语言模型时代。本章将简要梳理大语言模型的技术要点以及构建过程,并且列举了可用于预训练以及微调模型的常用数据集,介绍了目前开发大语言模型常用的代码库、预训练大语言模型的步骤以及涉及的关键技术,包括数据准备阶段、模型
- The Simulation技术浅析(二):模型技术
爱研究的小牛
AIGC—虚拟现实算法人工智能AIGC机器学习深度学习
一、物理模型(PhysicalModels)1.概述物理模型基于物理定律和原理,通过模拟现实世界中物理系统的行为和相互作用来构建模型。物理模型通常用于工程、物理和化学等领域,用于预测系统在不同条件下的表现。2.关键技术力学定律:例如牛顿运动定律,用于模拟物体的运动和受力情况。流体力学:例如纳维-斯托克斯方程,用于模拟流体流动。热力学定律:例如热传导方程,用于模拟热量传递。3.过程模型公式及案例详解
- 嵌入式工程师必学(99):直流电路定理
芯片-嵌入式
嵌入式硬件
线性度属性LinearityProperty线性是描述因果之间线性关系的元素的属性。它是均匀性和可加性特性的组合。齐次性属性要求,如果输入(激励)乘以一个常数,则输出(响应)乘以相同的常数。例如,对于电阻,欧姆定律将输入i与输出v相关联:v=iR。如果i增加一个常数k,则v相应地增加k;那是可加性属性要求对输入之和的响应是对单独应用的每个输入的响应之和。因此,对于电阻,如果V1=i1R
- AI语言模型竞争加剧:新秀崛起 格局生变
XianxinMao
人工智能语言模型自然语言处理
标题:AI语言模型竞争加剧:新秀崛起格局生变文章信息摘要:AI语言模型领域呈现加速发展和分化态势。在LMSYS排行榜上,Claude3Opus超越GPT-4Turbo,DBRX超越Mixtral成为最佳开源模型,显示领先位置更替频繁。开源与闭源模型形成差异化发展路径:开源模型注重效率和架构创新,闭源API模型专注高端性能。模型训练成本呈现类摩尔定律式下降,每年降低75%。MoE架构在计算效率和性能
- jQuery 键盘事件keydown ,keypress ,keyup介绍
107x
jsjquerykeydownkeypresskeyup
本文章总结了下些关于jQuery 键盘事件keydown ,keypress ,keyup介绍,有需要了解的朋友可参考。
一、首先需要知道的是: 1、keydown() keydown事件会在键盘按下时触发. 2、keyup() 代码如下 复制代码
$('input').keyup(funciton(){  
- AngularJS中的Promise
bijian1013
JavaScriptAngularJSPromise
一.Promise
Promise是一个接口,它用来处理的对象具有这样的特点:在未来某一时刻(主要是异步调用)会从服务端返回或者被填充属性。其核心是,promise是一个带有then()函数的对象。
为了展示它的优点,下面来看一个例子,其中需要获取用户当前的配置文件:
var cu
- c++ 用数组实现栈类
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T, int SIZE = 50>
class Stack{
private:
T list[SIZE];//数组存放栈的元素
int top;//栈顶位置
public:
Stack(
- java和c语言的雷同
麦田的设计者
java递归scaner
软件启动时的初始化代码,加载用户信息2015年5月27号
从头学java二
1、语言的三种基本结构:顺序、选择、循环。废话不多说,需要指出一下几点:
a、return语句的功能除了作为函数返回值以外,还起到结束本函数的功能,return后的语句
不会再继续执行。
b、for循环相比于whi
- LINUX环境并发服务器的三种实现模型
被触发
linux
服务器设计技术有很多,按使用的协议来分有TCP服务器和UDP服务器。按处理方式来分有循环服务器和并发服务器。
1 循环服务器与并发服务器模型
在网络程序里面,一般来说都是许多客户对应一个服务器,为了处理客户的请求,对服务端的程序就提出了特殊的要求。
目前最常用的服务器模型有:
·循环服务器:服务器在同一时刻只能响应一个客户端的请求
·并发服务器:服
- Oracle数据库查询指令
肆无忌惮_
oracle数据库
20140920
单表查询
-- 查询************************************************************************************************************
-- 使用scott用户登录
-- 查看emp表
desc emp
- ext右下角浮动窗口
知了ing
JavaScriptext
第一种
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/
- 浅谈REDIS数据库的键值设计
矮蛋蛋
redis
http://www.cnblogs.com/aidandan/
原文地址:http://www.hoterran.info/redis_kv_design
丰富的数据结构使得redis的设计非常的有趣。不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与。redis的DBA需要熟悉数据结构,并能了解使用场景。
- maven编译可执行jar包
alleni123
maven
http://stackoverflow.com/questions/574594/how-can-i-create-an-executable-jar-with-dependencies-using-maven
<build>
<plugins>
<plugin>
<artifactId>maven-asse
- 人力资源在现代企业中的作用
百合不是茶
HR 企业管理
//人力资源在在企业中的作用人力资源为什么会存在,人力资源究竟是干什么的 人力资源管理是对管理模式一次大的创新,人力资源兴起的原因有以下点: 工业时代的国际化竞争,现代市场的风险管控等等。所以人力资源 在现代经济竞争中的优势明显的存在,人力资源在集团类公司中存在着 明显的优势(鸿海集团),有一次笔者亲自去体验过红海集团的招聘,只 知道人力资源是管理企业招聘的 当时我被招聘上了,当时给我们培训 的人
- Linux自启动设置详解
bijian1013
linux
linux有自己一套完整的启动体系,抓住了linux启动的脉络,linux的启动过程将不再神秘。
阅读之前建议先看一下附图。
本文中假设inittab中设置的init tree为:
/etc/rc.d/rc0.d
/etc/rc.d/rc1.d
/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d
/etc/rc.d/rc5.d
/etc
- Spring Aop Schema实现
bijian1013
javaspringAOP
本例使用的是Spring2.5
1.Aop配置文件spring-aop.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans
xmlns="http://www.springframework.org/schema/beans"
xmln
- 【Gson七】Gson预定义类型适配器
bit1129
gson
Gson提供了丰富的预定义类型适配器,在对象和JSON串之间进行序列化和反序列化时,指定对象和字符串之间的转换方式,
DateTypeAdapter
public final class DateTypeAdapter extends TypeAdapter<Date> {
public static final TypeAdapterFacto
- 【Spark八十八】Spark Streaming累加器操作(updateStateByKey)
bit1129
update
在实时计算的实际应用中,有时除了需要关心一个时间间隔内的数据,有时还可能会对整个实时计算的所有时间间隔内产生的相关数据进行统计。
比如: 对Nginx的access.log实时监控请求404时,有时除了需要统计某个时间间隔内出现的次数,有时还需要统计一整天出现了多少次404,也就是说404监控横跨多个时间间隔。
Spark Streaming的解决方案是累加器,工作原理是,定义
- linux系统下通过shell脚本快速找到哪个进程在写文件
ronin47
一个文件正在被进程写 我想查看这个进程 文件一直在增大 找不到谁在写 使用lsof也没找到
这个问题挺有普遍性的,解决方法应该很多,这里我给大家提个比较直观的方法。
linux下每个文件都会在某个块设备上存放,当然也都有相应的inode, 那么透过vfs.write我们就可以知道谁在不停的写入特定的设备上的inode。
幸运的是systemtap的安装包里带了inodewatch.stp,位
- java-两种方法求第一个最长的可重复子串
bylijinnan
java算法
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class MaxPrefix {
public static void main(String[] args) {
String str="abbdabcdabcx";
- Netty源码学习-ServerBootstrap启动及事件处理过程
bylijinnan
javanetty
Netty是采用了Reactor模式的多线程版本,建议先看下面这篇文章了解一下Reactor模式:
http://bylijinnan.iteye.com/blog/1992325
Netty的启动及事件处理的流程,基本上是按照上面这篇文章来走的
文章里面提到的操作,每一步都能在Netty里面找到对应的代码
其中Reactor里面的Acceptor就对应Netty的ServerBo
- servelt filter listener 的生命周期
cngolon
filterlistenerservelt生命周期
1. servlet 当第一次请求一个servlet资源时,servlet容器创建这个servlet实例,并调用他的 init(ServletConfig config)做一些初始化的工作,然后调用它的service方法处理请求。当第二次请求这个servlet资源时,servlet容器就不在创建实例,而是直接调用它的service方法处理请求,也就是说
- jmpopups获取input元素值
ctrain
JavaScript
jmpopups 获取弹出层form表单
首先,我有一个div,里面包含了一个表单,默认是隐藏的,使用jmpopups时,会弹出这个隐藏的div,其实jmpopups是将我们的代码生成一份拷贝。
当我直接获取这个form表单中的文本框时,使用方法:$('#form input[name=test1]').val();这样是获取不到的。
我们必须到jmpopups生成的代码中去查找这个值,$(
- vi查找替换命令详解
daizj
linux正则表达式替换查找vim
一、查找
查找命令
/pattern<Enter> :向下查找pattern匹配字符串
?pattern<Enter>:向上查找pattern匹配字符串
使用了查找命令之后,使用如下两个键快速查找:
n:按照同一方向继续查找
N:按照反方向查找
字符串匹配
pattern是需要匹配的字符串,例如:
1: /abc<En
- 对网站中的js,css文件进行打包
dcj3sjt126com
PHP打包
一,为什么要用smarty进行打包
apache中也有给js,css这样的静态文件进行打包压缩的模块,但是本文所说的不是以这种方式进行的打包,而是和smarty结合的方式来把网站中的js,css文件进行打包。
为什么要进行打包呢,主要目的是为了合理的管理自己的代码 。现在有好多网站,你查看一下网站的源码的话,你会发现网站的头部有大量的JS文件和CSS文件,网站的尾部也有可能有大量的J
- php Yii: 出现undefined offset 或者 undefined index解决方案
dcj3sjt126com
undefined
在开发Yii 时,在程序中定义了如下方式:
if($this->menuoption[2] === 'test'),那么在运行程序时会报:undefined offset:2,这样的错误主要是由于php.ini 里的错误等级太高了,在windows下错误等级
- linux 文件格式(1) sed工具
eksliang
linuxlinux sed工具sed工具linux sed详解
转载请出自出处:
http://eksliang.iteye.com/blog/2106082
简介
sed 是一种在线编辑器,它一次处理一行内容。处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的内容送往屏幕。接着处理下一行,这样不断重复,直到文件末尾
- Android应用程序获取系统权限
gqdy365
android
引用
如何使Android应用程序获取系统权限
第一个方法简单点,不过需要在Android系统源码的环境下用make来编译:
1. 在应用程序的AndroidManifest.xml中的manifest节点
- HoverTree开发日志之验证码
hvt
.netC#asp.nethovertreewebform
HoverTree是一个ASP.NET的开源CMS,目前包含文章系统,图库和留言板功能。代码完全开放,文章内容页生成了静态的HTM页面,留言板提供留言审核功能,文章可以发布HTML源代码,图片上传同时生成高品质缩略图。推出之后得到许多网友的支持,再此表示感谢!留言板不断收到许多有益留言,但同时也有不少广告,因此决定在提交留言页面增加验证码功能。ASP.NET验证码在网上找,如果不是很多,就是特别多
- JSON API:用 JSON 构建 API 的标准指南中文版
justjavac
json
译文地址:https://github.com/justjavac/json-api-zh_CN
如果你和你的团队曾经争论过使用什么方式构建合理 JSON 响应格式, 那么 JSON API 就是你的 anti-bikeshedding 武器。
通过遵循共同的约定,可以提高开发效率,利用更普遍的工具,可以是你更加专注于开发重点:你的程序。
基于 JSON API 的客户端还能够充分利用缓存,
- 数据结构随记_2
lx.asymmetric
数据结构笔记
第三章 栈与队列
一.简答题
1. 在一个循环队列中,队首指针指向队首元素的 前一个 位置。
2.在具有n个单元的循环队列中,队满时共有 n-1 个元素。
3. 向栈中压入元素的操作是先 移动栈顶指针&n
- Linux下的监控工具dstat
网络接口
linux
1) 工具说明dstat是一个用来替换 vmstat,iostat netstat,nfsstat和ifstat这些命令的工具, 是一个全能系统信息统计工具. 与sysstat相比, dstat拥有一个彩色的界面, 在手动观察性能状况时, 数据比较显眼容易观察; 而且dstat支持即时刷新, 譬如输入dstat 3, 即每三秒收集一次, 但最新的数据都会每秒刷新显示. 和sysstat相同的是,
- C 语言初级入门--二维数组和指针
1140566087
二维数组c/c++指针
/*
二维数组的定义和二维数组元素的引用
二维数组的定义:
当数组中的每个元素带有两个下标时,称这样的数组为二维数组;
(逻辑上把数组看成一个具有行和列的表格或一个矩阵);
语法:
类型名 数组名[常量表达式1][常量表达式2]
二维数组的引用:
引用二维数组元素时必须带有两个下标,引用形式如下:
例如:
int a[3][4]; 引用:
- 10点睛Spring4.1-Application Event
wiselyman
application
10.1 Application Event
Spring使用Application Event给bean之间的消息通讯提供了手段
应按照如下部分实现bean之间的消息通讯
继承ApplicationEvent类实现自己的事件
实现继承ApplicationListener接口实现监听事件
使用ApplicationContext发布消息