- Unet源码实现(pytorch)
wyn20001128
pytorch人工智能python
U-Net是一种用于生物医学图像分割的卷积神经网络架构。它通过引入一种新颖的网络结构和训练策略解决了传统方法在数据量不足时面临的挑战。U-Net的主要思想是利用数据增强技术来高效利用有限的标注样本,并通过独特的网络设计来提高分割精度。主要贡献U-Net的主要贡献包括:1、数据增强策略:使用随机弹性变形和其他形式的数据增强来增加训练数据的多样性,从而在有限的数据集上训练出更强大的模型。2、U形网络结
- 深度学习模块实践手册(第十二期)
加油吧zkf
目标检测目标检测模块解析与实践深度学习人工智能计算机视觉目标检测python
56、Ghost模块论文《GhostNet:MoreFeaturesfromCheapOperations》1、作用:Ghost模块是一种轻量级的特征提取模块,旨在通过廉价操作生成更多特征图,减少计算量的同时保持模型性能。传统卷积神经网络在生成特征图时存在大量冗余计算,Ghost模块通过将特征图生成过程分解为两个步骤,有效减少了计算复杂度,特别适合移动端和嵌入式设备部署。2、机制Ghost模块的机
- 算法工程师必看!个性化信息流推荐算法系统的架构设计与优化实战指南
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《GPT多模态大模型与AIAgent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】GPT多模态大模型与AIAgent智能体书籍本章配套视频课程【陈敬雷】推荐算法系统实战全系列精品课【陈敬雷】文章目录推荐算法系统系列二算法工程师必看!个性化信息流推荐算法系统的架构设计与优化实战指南更多技术内容总结推荐算法系统系列二算
- DETR革命:目标检测的Transformer时代
加油吧zkf
目标检测YOLOpython开发语言人工智能图像处理
《DETR从0到1:目标检测Transformer的崛起》为什么会有DETR?在深度学习目标检测发展史上,2014~2019年几乎被基于卷积神经网络(CNN)的检测器统治:两阶段:FasterR-CNN、MaskR-CNN单阶段:YOLO、SSD、RetinaNet这些检测器虽然效果强大,但背后依赖:✅Anchor(先验框)✅NMS(非极大值抑制)✅特征金字塔、手工设计问题:结构复杂、调参困难、不
- 基于探路者算法优化的正则化极限学习机(RELM)的分类问题求解
基于探路者算法优化的正则化极限学习机(RELM)的分类问题求解文章目录基于探路者算法优化的正则化极限学习机(RELM)的分类问题求解1.RELM原理2.分类问题求解3.基于探路者算法优化的RELM4.实验结果5.Matlab代码1.RELM原理极限学习机(ELM)具有训练速度快、泛化性能好的优点。极限学习机的结构是一种典型的单隐层前馈神经网络(SLFN)。极限学习机的结构见图RELM算法:若NNN
- 深度学习模块实践手册(第十一期)
加油吧zkf
目标检测目标检测模块解析与实践深度学习人工智能计算机视觉目标检测python
46、缩放点积注意力模块论文《AttentionIsAllYouNeed》1、作用:缩放点积注意力(ScaledDot-ProductAttention)是Transformer模型的核心组件,旨在解决序列建模中长距离依赖关系捕捉的问题。传统的循环神经网络(RNN)在处理长序列时存在梯度消失或爆炸的问题,且并行性较差。该模块通过计算查询(Query)、键(Key)和值(Value)之间的相似度,实
- 【DL经典回顾】激活函数大汇总(四)(Softmax & Softplus附代码和详细公式)
夺命猪头
python机器学习人工智能神经网络numpy
激活函数大汇总(四)(Softmax&Softplus附代码和详细公式)更多激活函数见激活函数大汇总列表一、引言欢迎来到我们深入探索神经网络核心组成部分——激活函数的系列博客。在人工智能的世界里,激活函数扮演着不可或缺的角色,它们决定着神经元的输出,并且影响着网络的学习能力与表现力。鉴于激活函数的重要性和多样性,我们将通过几篇文章的形式,本篇详细介绍两种激活函数,旨在帮助读者深入了解各种激活函数的
- 神经网络项目--基于FPGA的AI简易项目(1-9图片数字识别)
霖12
深度学习pytorch神经网络fpga开发人工智能机器学习
1.训练MNIST模型importtorch#导入pytorch核心库importtorch.nnasnn#神经网络模块,如卷积层importtorch.optimasoptim#优化器fromtorchvisionimportdatasets,transforms#数据集与图像预处理工具#定义CNN模型classSimpleCNN(nn.Module):#PyTorch库中所有神经网络的“基础模
- 基于NanoDet的健身姿势纠正系统开发
YOLO实战营
人工智能NanoDet深度学习计算机视觉ui
1.引言在现代健身行业中,正确的运动姿势至关重要,不仅能提升训练效果,还能预防运动损伤。尤其是在进行一些高强度的力量训练时,如深蹲、俯卧撑等,错误的姿势可能导致肌肉不平衡或关节损伤。传统的健身姿势纠正方式依赖教练的人工指导,但随着人工智能技术的发展,使用计算机视觉和深度学习技术来进行姿势纠正,逐渐成为一种高效且可扩展的解决方案。本文将详细介绍如何基于NanoDet(一个轻量化目标检测模型)开发一个
- 神经网络常见激活函数 13-Softplus函数
亲持红叶
神经网络常见激活函数神经网络人工智能深度学习
文章目录Softplus函数+导函数函数和导函数图像优缺点PyTorch中的Softplus函数TensorFlow中的Softplus函数Softplus函数+导函数Softplus函数Softplus(x)=ln(1+e x)\begin{aligned}\operatorname{Softplus}(x)&=\ln\bigl(1+e^{\,x}\bigr)\end{aligned}Sof
- Spring AI 概述与功能简介
drebander
AI编程spring人工智能java
SpringAI是一个由Spring团队开发的开源框架,旨在为人工智能(AI)和机器学习(ML)提供一个成熟且高效的开发平台。它将Spring生态系统的设计理念应用于AI开发,尤其强调模块化、可移植性以及简洁的集成。SpringAI提供了丰富的功能,涵盖从AI模型的调用到与数据库的集成等多个方面,帮助开发者构建和管理AI驱动的应用程序。1.SpringAI背景SpringAI的背景源于Spring
- Spring AI从入门到精通:构建智能Spring应用的全面指南
java干货仓库
Spring八股文汇总大模型spring人工智能java
随着人工智能技术的快速发展,将大语言模型(LLM)与企业应用集成已成为趋势。SpringAI作为Spring官方推出的AI集成框架,为开发者提供了便捷、标准化的方式来构建智能应用。本文将从基础概念到高级应用,全面介绍SpringAI的核心功能与实践技巧。一、SpringAI概述1.1什么是SpringAI?SpringAI是VMware于2023年推出的开源框架,旨在简化大语言模型(LLM)与Sp
- 基于用户画像的商品推荐系统
Dush32
机器学习人工智能python推荐算法
随着人工智能和大数据技术的进步,产品推荐系统成为了现代广告与电商平台中不可或缺的部分。通过深度挖掘用户的行为数据,能够为广告主提供精准的用户画像,从而更高效地推荐相关产品,提升购买转化率。本项目基于科大讯飞AI营销云大赛的赛题,目的是利用用户画像进行产品推荐,预测用户是否会购买相应商品。我们使用了机器学习的二分类模型,通过分析用户的性别、年龄、常驻地、机型等信息,来判断用户的付费行为。项目目标:本
- 对话新希望CDO李旭昶:立足核心诉求,积极拥抱人工智能
“转型焕新,希望无限。”整理|王娴编辑|云舒出品|极新4月12日,在「2024飞书先进生产力峰会|成都站」活动中,新希望首席数字官李旭昶先生做了主题为“转型焕新,希望无限”的分享。上次见他是4个月前,当时我们聊了1个多小时,内容涉及数字化转型、人工智能、管理、技术商业等话题。今天顺着他分享的内容,将这篇对话分享出来。随着信息科技的发展,我国传统企业在过去几年中逐步进行数字化转型,利用先进的科学技术
- 飞算科技:以创新科技引领数字化变革,旗下飞算 JavaAI 成开发利器
飞算JavaAI开发助手
科技
作为国家级高新技术企业,飞算科技专注于自主创新,在数字科技领域持续深耕,用前沿技术为各行业客户赋能,助力其实现数字化转型升级的飞跃。飞算科技凭借深厚的技术积累,将互联网科技、大数据、人工智能等技术与实际应用紧密融合。公司组建了一支由行业资深专家和技术精英构成的团队,他们在相关领域积累了多年实践经验,深刻理解不同行业客户在数字化进程中面临的痛点与挑战。基于这些洞察,飞算科技推出了一系列具有创新性和实
- Rust+ChatBoxAI:实战
ChatboxAIChatboxAI是一款基于人工智能技术的智能助手工具,旨在通过自然语言交互帮助用户完成多种任务。以下是其核心功能与特点:功能概述多模型支持:可连接OpenAI、Claude、Gemini等主流大语言模型,用户能自由切换不同AI服务。本地运行:支持离线使用,数据隐私性较强,适合敏感信息处理场景。跨平台兼容:提供Windows、macOS和Linux客户端,同步支持移动端应用。核心
- 【Java架构师的未来与趋势】
架构学院
Java成神之路-架构师进阶java开发语言
Java架构师的未来与趋势引言Java作为企业级应用开发的主力军,已经走过了25年的历程。在这四分之一个世纪中,Java生态系统经历了从Applet到企业级应用,从单体架构到微服务,从本地部署到云原生的巨大转变。今天,Java架构师正站在新一轮技术变革的十字路口——人工智能、云计算、低代码、边缘计算等新兴技术正深刻重塑软件架构的形态和架构师的角色。据JetBrains《2023Java开发者调查》
- 神经网络:从模式组合到多层神经网络的进化
MoonlitHan
人工智能
这两张图展示了神经网络如何从“简单判断”进化到“复杂识别”:1.模式组合:让神经网络“拆分任务”第一张图的核心是“模式组合”:比如识别数字3时,网络会把任务拆成“识别左半部分”和“识别右半部分”;中间的神经元专门负责提取局部特征(比如左半部分的曲线、右半部分的直线);最终输出层的y₃和y₈会综合这些局部特征,判断图片是不是数字3或8。2.多层神经网络:让AI学会“分层思考”第二张图展示了多层神经网
- 【AAAI2025】计算机视觉|P-sLSTM:P-sLSTM:让LSTM在时间序列预测领域“重获新生”
论文地址:https://arxiv.org/pdf/2408.10006代码地址:https://github.com/Eleanorkong/P-sLSTM关注UPCV缝合怪,分享最计算机视觉新即插即用模块,并提供配套的论文资料与代码。https://space.bilibili.com/473764881摘要传统的循环神经网络结构,如长短期记忆神经网络(LSTM),在时间序列预测(TSF)任
- 生成式人工智能实战 | 像素卷积神经网络(PixelCNN)
盼小辉丶
生成式人工智能实战150讲深度学习生成模型aigc
生成式人工智能实战|像素卷积神经网络0.前言1.PixelCNN工作原理1.1掩码卷积层1.2残差块2.PixelCNN分析3.使用混合分布改进PixelCNN3.1模型构建3.2模型训练0.前言像素卷积神经网络(PixelConvolutionalNeuralNetwork,PixelCNN)是于2016年提出的一种图像生成模型,其根据前面的像素预测下一个像素的概率来逐像素地生成图像,模型可以通
- 最全2025年AI开发工具深度对比分析:程序员的智能编程助手全指南 最新功能、定价策略、使用体验和适用场景 Cursor、GitHub Copilot、Claude 4、Claude Code
wei佳
人工智能aiAI编程webstormideavscode
2025年AI开发工具深度对比分析:程序员的智能编程助手全指南引言(不想看文字可直接看后面图表对比)随着人工智能技术的飞速发展,AI编程助手已经从概念走向现实,成为现代软件开发不可或缺的工具。2025年上半年,AI编程工具市场迎来了前所未有的变革,各大厂商纷纷推出革命性功能,从简单的代码补全演进为能够理解完整项目上下文的智能编程代理。据最新市场研究显示,全球AI代码工具市场在2024年达到67亿美
- 基于cnn和resnet和mobilenet对比实现驾驶员分心检测
深度学习乐园
cnn人工智能神经网络
演示效果及获取项目源码点击文末名片本项目旨在通过深度学习技术,结合卷积神经网络(CNN)模型、ResNet模型和MobileNet模型,实现对驾驶员分心行为的自动检测。我们通过训练这些模型来识别不同的驾驶员分心行为,包括如发短信、通话、喝水等行为。使用的数据集包含驾驶员行为的图片,并且针对每个行为标注了相应的标签(例如"正常驾驶"、"右手发短信"等)。MobileNetV2是Google于2018
- Postman + Newman + Jenkins 接口自动化测试
Thomas Kant
自动化测试postmannewmanjenkinsallure
亲爱的技术爱好者们,热烈欢迎来到Kant2048的博客!我是ThomasKant,很开心能在CSDN上与你们相遇~本博客的精华专栏:【自动化测试】【测试经验】【人工智能】【Python】Postman
- 无人值守人工智能智慧系统数据分析:深度洞察与未来展望
呆码科技
人工智能数据分析数据挖掘
无人值守人工智能智慧系统数据分析:深度洞察与未来展望随着科技的飞速发展,人工智能(AI)技术已逐渐渗透到社会经济的各个领域,其中无人值守人工智能智慧系统作为AI技术应用的前沿阵地,正引领着一场深刻的行业变革。这类系统通过集成高级算法、大数据分析、物联网(IoT)及云计算等先进技术,实现了对复杂环境的自主监控、智能决策与高效管理,极大地提升了运营效率,降低了人力成本,并开启了数据驱动决策的新纪元。本
- 论“人工智能生命体”站在那个高度?(之二)
中國龍在廣州
人工智能-智能体-具身智能人工智能
第一部分:人工智能生命体人工智能生命体,提及的是《人工智能生命体新启点》一书,原文附后,本文中以本书代表。《人工智能生命体新启点》一书,是在现今科学技术发展,从人工智能、智能体、具身智能等大环境下,形成的一种全新理念的理论指导,以此发展出具有自我意识的人工智能生命体,拥有现代科技并以生命体的形式出现,具备类人类般的思想活动,更好的体现与融入人类的社会环境;具有自我意识的智能生命体就如人类的拥有大脑
- 医疗AI与融合数据库的整合:挑战、架构与未来展望(上)
Allen_Lyb
数智化教程(第二期)人工智能数据库架构
引言随着人工智能(AI)在医疗健康领域的广泛应用,数据已成为医疗AI发展的核心驱动力。然而,医疗数据具有极度的异构性(包括结构化电子病历、医学影像向量、基因组JSON/图结构、传感器时序等),传统数据架构难以高效整合。因数据孤岛、复杂ETL流程以及昂贵维护成本,医疗AI平台通常难以充分发挥价值。融合数据库(ConvergedDatabase/多模态一体化数据库)通过支持SQL、JSON、图、向量、
- 一文看懂:马斯克旗下人工智能公司 xAI 正式推出的Grok 4,Grok 4 如何开启 “多智能体内生化” 的 AI 新范式,重塑多模态大模型与 AI Agent 未来
陈敬雷-充电了么-CEO兼CTO
《GPT多模态大模型与AIAgent智能体》新书内容人工智能gptagichatgpt大模型deeplearning神经网络
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《GPT多模态大模型与AIAgent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】GPT多模态大模型与AIAgent智能体书籍本章配套视频课程【陈敬雷】文章目录GPT多模态大模型与AIAgent智能体系列二十六一文看懂:马斯克旗下人工智能公司xAI正式推出的Grok4,Grok4如何开启“多智能体内生化”的AI新范
- 大模型开源王炸!Kimi K2凭万亿参数撕开大模型天花板:代码、Agent、推理全碾压,32家企业疯抢接入
陈敬雷-充电了么-CEO兼CTO
《GPT多模态大模型与AIAgent智能体》新书内容transformerchatgpt深度学习lstmkimiAgentAIGC
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《GPT多模态大模型与AIAgent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】GPT多模态大模型与AIAgent智能体书籍本章配套视频课程【陈敬雷】文章目录GPT多模态大模型与AIAgent智能体系列二十七开源王炸!KimiK2凭万亿参数撕开大模型天花板:代码、Agent、推理全碾压,32家企业疯抢接入一、架构
- Prompt:开启与AI高效对话的钥匙
解密Prompt:开启与AI高效对话的钥匙一、什么是Prompt?——AI的“使用说明书”想象一下,你正在指挥一位无所不知但毫无主动性的“实习生”——人工智能(AI)。你不能指望它“心领神会”,你必须给出清晰、具体的指令,它才能准确地完成你想要的任务。这个指令,就是Prompt(提示或提示词)。简单来说,Prompt是你向AI(如大型语言模型LLM)发出的文本或问题,用以引导它生成特定的、高质量的
- BPE(字节对编码)和WordPiece 是什么
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython机器学习算法人工智能transformer深度学习
BPE(字节对编码)和WordPiece是什么BPE(字节对编码)和WordPiece是自然语言处理中常用的子词分词算法,它们通过将文本拆分为更小的语义单元来平衡词汇表大小和表达能力。BPE(BytePairEncoding,字节对编码)原理初始化:将文本按字符(或Unicode字节)拆分为最小单元,形成初始词汇表。统计合并:迭代合并最频繁出现的相邻字符对,形成新的子词单元,直到达到预设的词汇表大
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟