- 深度学习:基于MindNLP的RAG应用开发
Landy_Jay
深度学习人工智能
什么是RAG?RAG(Retrieval-AugmentedGeneration,检索增强生成)是一种结合检索(Retrieval)和生成(Generation)的技术,旨在提升大语言模型(LLM)生成内容的准确性、相关性和时效性。基本思想:通过外部知识库动态检索与用户查询相关的信息,并将检索结果作为上下文输入生成模型,辅助生成更可靠的回答。与传统LLM的区别:传统LLM仅依赖预训练参数中的静态知
- M-Ped: Multi-Prompt Ensemble Decoding for Large Language Models
UnknownBody
LLMDailyLLMPromptprompt语言模型人工智能
本文是LLM系列文章,针对《M-Ped:Multi-PromptEnsembleDecodingforLargeLanguageModels》的翻译。M-Ped:大型语言模型的多提示集成解码摘要1引言2方法3实验4研究5相关工作6结论摘要随着大型语言模型(LLMs)在自然语言处理(NLP)领域的广泛应用,提高其性能已成为研究热点。本文提出了一种新的多提示集成解码方法,旨在通过利用多个提示的结果聚合
- DeepSeek:开启智能搜索与AI发展的新纪元
gs80140
AI人工智能
在人工智能领域,DeepSeek正以其卓越的技术创新和强大的性能表现,成为全球瞩目的焦点。作为一款基于深度学习技术的智能搜索引擎和AI模型,DeepSeek不仅在技术上取得了重大突破,还在多个应用场景中展现了巨大的应用潜力,为用户带来了前所未有的智能体验。一、DeepSeek简介DeepSeek由杭州深度求索人工智能基础技术研究有限公司推出,是一款集自然语言处理(NLP)、计算机视觉(CV)、强化
- 【 书生·浦语大模型实战营】学习笔记(三):“茴香豆” 搭建你的RAG 智能助理
GoAI
自然语言处理NLP深入浅出AI深入浅出LLM深度学习LLM人工智能大模型
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接【书生·
- 从零开始大模型开发与微调:汉字拼音数据集处理
AGI大模型与大数据研究院
大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:汉字拼音数据集处理1.背景介绍1.1问题的由来在人工智能领域,自然语言处理(NLP)是一项基础且重要的研究方向。随着深度学习技术的飞速发展,大规模语言模型(LargeLanguageModel,LLM)在NLP领域取得了显著的成果。然而,LLM的训练与微调过程往往需要海量的文本数据,而这些数据通常以自然语言形式存在,难以直接用于模型训练。因此,如何从自然语言数据中提取结构
- AI在虚拟客户服务中的应用:提供24_7支持
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
AI在虚拟客户服务中的应用:提供24/7支持关键词:虚拟客服,自然语言处理(NLP),聊天机器人,对话系统,深度学习,用户支持,自动化1.背景介绍随着互联网和移动互联网的迅速发展,客户服务成为各大企业提升竞争力的重要环节。但传统的客服模式存在诸多痛点:人力成本高、响应时间慢、工作时间有限等。在企业面临全时用户需求和竞争压力日益加剧的当下,如何以更低的成本、更快的速度、更高效的资源利用率,持续提供优
- 柳暗花明又一村:Seq2Seq编码器解码器架构
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
Seq2Seq,编码器-解码器,自然语言处理,机器翻译,文本生成,循环神经网络,长短期记忆网络1.背景介绍在人工智能领域,自然语言处理(NLP)始终是研究的热点之一。从机器翻译到文本摘要,从对话系统到问答机器人,Seq2Seq编码器-解码器架构在众多NLP任务中展现出强大的能力。传统的机器翻译方法通常依赖于统计模型和规则引擎,难以捕捉语言的复杂性和语义关系。随着深度学习的兴起,Seq2Seq架构为
- 【llm对话系统】大模型 Llama 源码分析之 Flash Attention
kakaZhui
llama人工智能AIGCchatgpt
1.写在前面近年来,基于Transformer架构的大型语言模型(LLM)在自然语言处理(NLP)领域取得了巨大的成功。Transformer的核心组件是自注意力(Self-Attention)机制,它允许模型捕捉输入序列中不同位置之间的关系。然而,标准的自注意力机制的计算复杂度与序列长度的平方成正比,这使得它在处理长序列时效率低下。为了解决这个问题,FlashAttention被提出,它是一种高
- 【自然语言处理(NLP)】基于Transformer架构的预训练语言模型:BERT 训练之数据集处理、训练代码实现
道友老李
自然语言处理(NLP)自然语言处理transformer
文章目录介绍BERT训练之数据集处理BERT原理及模型代码实现数据集处理导包加载数据生成下一句预测任务的数据从段落中获取nsp数据生成遮蔽语言模型任务的数据从token中获取mlm数据将文本转换为预训练数据集创建Dataset加载WikiText-2数据集BERT训练代码实现导包加载数据构建BERT模型模型损失训练获取BERT编码器个人主页:道友老李欢迎加入社区:道友老李的学习社区介绍**自然语言
- 【自然语言处理(NLP)】Word2Vec 原理及模型架构(Skip-Gram、CBOW)
道友老李
自然语言处理(NLP)自然语言处理word2vec
文章目录介绍Word2Vec介绍Word2Vec的核心概念Word2Vec的优点Word2Vec的缺点Word2Vec的应用场景Word2Vec的实现工具总结Word2Vec数学推导过程1.CBOW模型的数学推导(1)输入表示(2)词向量矩阵(3)输出层(4)损失函数(5)参数更新2.Skip-Gram模型的数学推导(1)输入表示(2)词向量矩阵(3)输出层(4)损失函数(5)参数更新3.优化技巧
- 向量语义(Vector Semantics)与表征学习(Representation Learning)详解
苏西月
学习人工智能
1.向量语义(VectorSemantics)与词嵌入(WordEmbeddings)向量语义的核心思想是用数学向量来表示单词的意义。传统的NLP方法(如基于规则的语言模型)需要人为定义单词的语义规则,而向量语义方法则通过分析单词在大量文本中的使用模式来学习其语义。关键词:词向量(WordRepresentations):单词被表示为一个多维向量,每个维度对应于该单词的某种语义特征。分布式表示(D
- 【llm对话系统】大模型 Llama、Qwen 和 ChatGLM 的网络结构和训练方法对比
kakaZhui
llama人工智能AIGCchatgptpython
1.引言近年来,大型语言模型(LLM)取得了令人瞩目的进展,其中Llama、Qwen和ChatGLM是三个备受关注的开源模型。它们都在Transformer架构的基础上进行了改进和优化,并在各种NLP任务上取得了优异的性能。本文将深入分析Llama、Qwen和ChatGLM的网络结构和训练方法,比较它们的异同以及各自的优势。2.模型结构对比特性LlamaQwenChatGLM基础架构Decoder
- 【AI知识点】三种不同架构的大语言模型(LLMs)的区别
AI完全体
AI知识点人工智能语言模型自然语言处理机器学习深度学习注意力机制自注意力机制
【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】在自然语言处理(NLP)中,预训练语言模型(LLMs,LargeLanguageModels)通常基于不同的架构,如仅编码器的模型(Encoder-only)、编码器-解码器的模型(Encoder-Decoder),以及仅解码器的模型(Decoder-only)。这三种架构有着显著的区别,主要体现在功能、适用任务和性能上。下面从架构、功能
- 【小白学AI系列】NLP 核心知识点(三)Word2Vec
Blankspace空白
人工智能自然语言处理word2vec
Word2Vec定义:Word2Vec是一种将单词转化为向量的技术,基于神经网络模型,它能够将单词的语义关系通过向量空间的距离和方向进行表示。通过Word2Vec,我们可以将单词从一个离散的符号转化为一个稠密的向量(一般是高维的),并且能够捕捉到单词之间的语义关系和相似性。历史来源:Word2Vec由TomasMikolov等人于2013年在谷歌提出,它迅速成为了词向量表示(wordembeddi
- 【小白学AI系列】NLP 核心知识点(五)Transformer介绍
Blankspace空白
人工智能自然语言处理transformer
TransformerTransformer是一种基于自注意力机制(Self-AttentionMechanism)的深度学习模型,首次由Vaswani等人于2017年在论文《AttentionisAllYouNeed》中提出。与RNN和LSTM不同,Transformer不需要依靠序列顺序进行递归,而是通过全局注意力机制一次性处理整个输入序列,从而具备了更高的计算效率和更强的并行化能力。Tran
- Linux中 端口被占用如何解决
烛照103
Linux专栏相关开发工具开发中的错误解决linux服务器网络
lsof命令查找查找被占用端口lsof-i:端口号#示例lsof-i:8080lsof-i:3306netstat命令查找查找被占用端口netstat-tuln|grep端口号#示例netstat-tuln|grep3306netstat-tuln|grep6379ss命令查找查找被占用端口ss-tunlp|grep端口号#示例ss-tunlp|grep3306终止端口进程kill-9PID#示例
- 智能化Kubernetes管理:AI与ChatGPT提升运维效率的创新实践
大大宝的博客
k8skubernetes人工智能chatgpt
摘要随着云计算技术的飞速发展,Kubernetes(K8s)已成为企业进行容器化应用管理的标准平台。然而,Kubernetes集群的管理在复杂度、规模和资源优化等方面仍然面临巨大挑战。传统的Kubernetes运维方式往往依赖手动操作,导致效率低下,且容易产生人为错误。随着人工智能(AI)技术的成熟,特别是基于自然语言处理(NLP)的智能体如ChatGPT的出现,AI智能体能够在Kubernete
- 【大模型应用开发 动手做AI Agent】Plan and Solve策略的提出
杭州大厂Java程序媛
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
【大模型应用开发动手做AIAgent】Plan-and-Solve策略的提出关键词:大模型,AIAgent,Plan-and-Solve,智能体,策略学习,强化学习,自然语言处理1.背景介绍随着人工智能技术的飞速发展,大模型(LargeLanguageModel,LLM)在自然语言处理(NaturalLanguageProcessing,NLP)领域取得了显著的突破。大模型能够理解和生成自然语言,
- 深度学习-笔记1
深度学习神经网络
刚开始接触深度学习相关内容,在这儿做一个笔记:网址:https://gitee.com/paddlepaddle/PaddleNLPpaddle-nlp是一个自然语言处理NLP方面的工具包(代码库)ERNIEERNIE是百度基于BERT改进的预训练大模型,结合了Transformer架构和知识增强机制。整体上可以分为预训练模型层和任务适配层,预训练模型层负责学习通用的语言知识和语义表示,任务适配层
- 表格化数据处理中大语言模型的微调优化策略研究
C7211BA
人工智能自然语言处理大语言模型
论文地址ResearchonFine-TuningOptimizationStrategiesforLargeLanguageModelsinTabularDataProcessing论文主要内容这篇论文的主要内容是研究大型语言模型(LLMs)在处理表格数据时的微调优化策略。具体来说,论文探讨了以下几个关键方面:背景与挑战:大型语言模型(LLMs)在自然语言处理(NLP)领域取得了显著进展,但在处
- NLP模型大对比:Transformer >Seq2Seq > LSTM > RNN > n-gram
feifeikon
自然语言处理transformerbert
结论Transformer大于传统的Seq2Seq大于LSTM大于RNN大于传统的n-gramn-gramVSTransformer我们可以用一个图书馆查询的类比来解释它们的差异:一、核心差异对比维度n-gram模型Transformer工作方式固定窗口的"近视观察员"全局关联的"侦探"依赖距离只能看前N-1个词(如3-gram只看前2词)可关注任意距离的上下文语义理解机械统计共现频率理解词语间的
- 讯飞绘镜(ai生成视频)技术浅析(三):自然语言处理(NLP)
爱研究的小牛
AIGC—视频AIGC—自然语言处理自然语言处理人工智能自然语言处理AIGC深度学习
1.技术架构概述讯飞绘镜的NLP技术架构可以分为以下几个核心模块:语义分析:理解用户输入的文本,提取关键信息(如实体、事件、情感等)。情节理解:分析文本中的故事情节,识别事件序列和逻辑关系。人物关系建模:识别文本中的人物及其关系,构建人物关系图。场景生成:根据情节和人物关系生成场景描述。每个模块都依赖于先进的深度学习模型和算法,以下将逐一详细讲解。2.语义分析语义分析的目标是从用户输入的文本中提取
- DeepSeek R1与OpenAI o1深度对比
码事漫谈
AI人工智能机器学习
文章目录引言技术原理DeepSeekR1OpenAIo1性能表现官方数据推理任务知识密集型任务通用能力价格对比应用场景科研与技术开发自然语言处理(NLP)企业智能化升级教育与培训数据分析与智能决策部署与集成DeepSeekR1OpenAIo1伦理考量DeepSeekR1OpenAIo1未来展望DeepSeekR1OpenAIo1引言在科技飞速发展的当下,人工智能领域中的大型语言模型(LLMs)正以
- Llama大型语言模型原理详解
摆烂大大王
llamallama语言模型人工智能
Llama大型语言模型是一种基于深度学习的自然语言处理模型,它在文本生成、问答、摘要等多种NLP任务中展现出强大的性能。本文将详细解析Llama模型的原理,包括其结构、训练过程以及工作机制,帮助读者深入理解这一先进的模型。一、模型结构Llama模型采用了一种基于Transformer的架构,这是一种由多个自注意力机制和前馈神经网络组成的深度神经网络结构。Transformer架构通过自注意力机制捕
- Linux系统python虚拟环境及HanLP部署
段智华
在Linux系统中运行HanLP,要安装部署一个Python的虚拟环境,实现Python2与Python3的版本共存,Python虚拟环境与JavaJVM虚拟机的共存,HanLP是面向生产环境的多语种NLP工具包,HanLp的标记是一只蝴蝶,蝴蝶象征着蝴蝶效应、非线性与混沌理论——虽然微小,但足以改变世界!(《自然语言处理入门》图书作者何晗)Linuxopenssl、libssl-dev等模块安装
- 我把DeepSeek-R1推理能力知识蒸馏到Qwen2,效果真的炸裂!!!
AI生成曾小健
自然语言处理人工智能
我把DeepSeek-R1推理能力知识蒸馏到Qwen2,效果真的炸裂!!!关于NLP那些你不知道的事2025年01月29日13:08我把DeepSeek-R1推理能力知识蒸馏到Qwen2,效果真的炸裂!!!一、什么是知识蒸馏?知识蒸馏是一种模型压缩技术,用于将大型复杂模型(教师模型)的知识迁移到小型模型(学生模型)。其核心原理是教师模型通过预测结果(如概率分布或推理过程)向学生模型传授知识,学生模
- 《攻克语言密码:教AI理解隐喻与象征》
程序猿阿伟
人工智能
在自然语言处理(NLP)领域,让计算机理解人类语言中的隐喻和象征,是迈向更高语言理解水平的关键一步。从“时间就是金钱”这样的概念隐喻,到文学作品里象征着坚韧的“寒梅”,这些非字面意义的表达方式承载着丰富的情感与文化内涵。然而,对于基于规则和数据驱动的NLP模型来说,理解隐喻和象征一直是块难啃的硬骨头。理解隐喻与象征:人类语言的独特魅力隐喻和象征作为常见的修辞手法,为语言表达增添了生动性与深度。隐喻
- 词表设计:特殊Token区域与共享去区域的深入探讨
东方佑
开发语言
在自然语言处理(NLP)中,Tokenizer的设计对于模型性能有着至关重要的影响。Tokenizer不仅决定了文本如何被分割成更小的单位(即token),还决定了这些token如何被映射到模型可以理解的形式。本文将详细探讨一种特殊的Tokenizer设计方法——特殊Token区域与共享去区域的设计理念,并介绍其应用场景和实现方式。特殊Token区域概述特殊Token区域通常包括一些特定的标识符,
- Synthesia技术浅析(四):自然语言处理
爱研究的小牛
AIGC—视频AIGC—虚拟现实AIGC—自然语言处理自然语言处理人工智能AIGC
Synthesia的自然语言处理(NLP)模块是其核心技术之一,涵盖了文本转语音(TTS)、情感分析以及多语言支持等多个方面。一、文本转语音(TTS)1.关键组件Synthesia的TTS系统主要依赖于Tacotron2和WaveGlow模型。这些模型共同作用,将文本转换为高质量的语音。2.过程模型详解2.1文本预处理文本预处理是TTS的第一步,包括分词、标点符号处理、数字和日期格式转换等。分词(
- 大模型问答机器人的智能化程度
AI大模型应用之禅
AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
大模型、问答机器人、智能化程度、自然语言处理、深度学习、Transformer模型、知识图谱、推理能力、对话系统1.背景介绍近年来,人工智能技术取得了飞速发展,特别是深度学习的兴起,为自然语言处理(NLP)领域带来了革命性的变革。其中,大模型问答机器人作为一种新型的智能交互系统,凭借其强大的语言理解和生成能力,在客服、教育、娱乐等领域展现出广阔的应用前景。问答机器人是指能够理解用户自然语言问题并给
- 微信开发者验证接口开发
362217990
微信 开发者 token 验证
微信开发者接口验证。
Token,自己随便定义,与微信填写一致就可以了。
根据微信接入指南描述 http://mp.weixin.qq.com/wiki/17/2d4265491f12608cd170a95559800f2d.html
第一步:填写服务器配置
第二步:验证服务器地址的有效性
第三步:依据接口文档实现业务逻辑
这里主要讲第二步验证服务器有效性。
建一个
- 一个小编程题-类似约瑟夫环问题
BrokenDreams
编程
今天群友出了一题:
一个数列,把第一个元素删除,然后把第二个元素放到数列的最后,依次操作下去,直到把数列中所有的数都删除,要求依次打印出这个过程中删除的数。
&
- linux复习笔记之bash shell (5) 关于减号-的作用
eksliang
linux关于减号“-”的含义linux关于减号“-”的用途linux关于“-”的含义linux关于减号的含义
转载请出自出处:
http://eksliang.iteye.com/blog/2105677
管道命令在bash的连续处理程序中是相当重要的,尤其在使用到前一个命令的studout(标准输出)作为这次的stdin(标准输入)时,就显得太重要了,某些命令需要用到文件名,例如上篇文档的的切割命令(split)、还有
- Unix(3)
18289753290
unix ksh
1)若该变量需要在其他子进程执行,则可用"$变量名称"或${变量}累加内容
什么是子进程?在我目前这个shell情况下,去打开一个新的shell,新的那个shell就是子进程。一般状态下,父进程的自定义变量是无法在子进程内使用的,但通过export将变量变成环境变量后就能够在子进程里面应用了。
2)条件判断: &&代表and ||代表or&nbs
- 关于ListView中性能优化中图片加载问题
酷的飞上天空
ListView
ListView的性能优化网上很多信息,但是涉及到异步加载图片问题就会出现问题。
具体参看上篇文章http://314858770.iteye.com/admin/blogs/1217594
如果每次都重新inflate一个新的View出来肯定会造成性能损失严重,可能会出现listview滚动是很卡的情况,还会出现内存溢出。
现在想出一个方法就是每次都添加一个标识,然后设置图
- 德国总理默多克:给国人的一堂“震撼教育”课
永夜-极光
教育
http://bbs.voc.com.cn/topic-2443617-1-1.html德国总理默多克:给国人的一堂“震撼教育”课
安吉拉—默克尔,一位经历过社会主义的东德人,她利用自己的博客,发表一番来华前的谈话,该说的话,都在上面说了,全世界想看想传播——去看看默克尔总理的博客吧!
德国总理默克尔以她的低调、朴素、谦和、平易近人等品格给国人留下了深刻印象。她以实际行动为中国人上了一堂
- 关于Java继承的一个小问题。。。
随便小屋
java
今天看Java 编程思想的时候遇见一个问题,运行的结果和自己想想的完全不一样。先把代码贴出来!
//CanFight接口
interface Canfight {
void fight();
}
//ActionCharacter类
class ActionCharacter {
public void fight() {
System.out.pr
- 23种基本的设计模式
aijuans
设计模式
Abstract Factory:提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类。 Adapter:将一个类的接口转换成客户希望的另外一个接口。A d a p t e r模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作。 Bridge:将抽象部分与它的实现部分分离,使它们都可以独立地变化。 Builder:将一个复杂对象的构建与它的表示分离,使得同
- 《周鸿祎自述:我的互联网方法论》读书笔记
aoyouzi
读书笔记
从用户的角度来看,能解决问题的产品才是好产品,能方便/快速地解决问题的产品,就是一流产品.
商业模式不是赚钱模式
一款产品免费获得海量用户后,它的边际成本趋于0,然后再通过广告或者增值服务的方式赚钱,实际上就是创造了新的价值链.
商业模式的基础是用户,木有用户,任何商业模式都是浮云.商业模式的核心是产品,本质是通过产品为用户创造价值.
商业模式还包括寻找需求
- JavaScript动态改变样式访问技术
百合不是茶
JavaScriptstyle属性ClassName属性
一:style属性
格式:
HTML元素.style.样式属性="值";
创建菜单:在html标签中创建 或者 在head标签中用数组创建
<html>
<head>
<title>style改变样式</title>
</head>
&l
- jQuery的deferred对象详解
bijian1013
jquerydeferred对象
jQuery的开发速度很快,几乎每半年一个大版本,每两个月一个小版本。
每个版本都会引入一些新功能,从jQuery 1.5.0版本开始引入的一个新功能----deferred对象。
&nb
- 淘宝开放平台TOP
Bill_chen
C++c物流C#
淘宝网开放平台首页:http://open.taobao.com/
淘宝开放平台是淘宝TOP团队的产品,TOP即TaoBao Open Platform,
是淘宝合作伙伴开发、发布、交易其服务的平台。
支撑TOP的三条主线为:
1.开放数据和业务流程
* 以API数据形式开放商品、交易、物流等业务;
&
- 【大型网站架构一】大型网站架构概述
bit1129
网站架构
大型互联网特点
面对海量用户、海量数据
大型互联网架构的关键指标
高并发
高性能
高可用
高可扩展性
线性伸缩性
安全性
大型互联网技术要点
前端优化
CDN缓存
反向代理
KV缓存
消息系统
分布式存储
NoSQL数据库
搜索
监控
安全
想到的问题:
1.对于订单系统这种事务型系统,如
- eclipse插件hibernate tools安装
白糖_
Hibernate
eclipse helios(3.6)版
1.启动eclipse 2.选择 Help > Install New Software...> 3.添加如下地址:
http://download.jboss.org/jbosstools/updates/stable/helios/ 4.选择性安装:hibernate tools在All Jboss tool
- Jquery easyui Form表单提交注意事项
bozch
jquery easyui
jquery easyui对表单的提交进行了封装,提交的方式采用的是ajax的方式,在开发的时候应该注意的事项如下:
1、在定义form标签的时候,要将method属性设置成post或者get,特别是进行大字段的文本信息提交的时候,要将method设置成post方式提交,否则页面会抛出跨域访问等异常。所以这个要
- Trie tree(字典树)的Java实现及其应用-统计以某字符串为前缀的单词的数量
bylijinnan
java实现
import java.util.LinkedList;
public class CaseInsensitiveTrie {
/**
字典树的Java实现。实现了插入、查询以及深度优先遍历。
Trie tree's java implementation.(Insert,Search,DFS)
Problem Description
Igna
- html css 鼠标形状样式汇总
chenbowen00
htmlcss
css鼠标手型cursor中hand与pointer
Example:CSS鼠标手型效果 <a href="#" style="cursor:hand">CSS鼠标手型效果</a><br/>
Example:CSS鼠标手型效果 <a href="#" style=&qu
- [IT与投资]IT投资的几个原则
comsci
it
无论是想在电商,软件,硬件还是互联网领域投资,都需要大量资金,虽然各个国家政府在媒体上都给予大家承诺,既要让市场的流动性宽松,又要保持经济的高速增长....但是,事实上,整个市场和社会对于真正的资金投入是非常渴望的,也就是说,表面上看起来,市场很活跃,但是投入的资金并不是很充足的......
 
- oracle with语句详解
daizj
oraclewithwith as
oracle with语句详解 转
在oracle中,select 查询语句,可以使用with,就是一个子查询,oracle 会把子查询的结果放到临时表中,可以反复使用
例子:注意,这是sql语句,不是pl/sql语句, 可以直接放到jdbc执行的
----------------------------------------------------------------
- hbase的简单操作
deng520159
数据库hbase
近期公司用hbase来存储日志,然后再来分析 ,把hbase开发经常要用的命令找了出来.
用ssh登陆安装hbase那台linux后
用hbase shell进行hbase命令控制台!
表的管理
1)查看有哪些表
hbase(main)> list
2)创建表
# 语法:create <table>, {NAME => <family&g
- C语言scanf继续学习、算术运算符学习和逻辑运算符
dcj3sjt126com
c
/*
2013年3月11日20:37:32
地点:北京潘家园
功能:完成用户格式化输入多个值
目的:学习scanf函数的使用
*/
# include <stdio.h>
int main(void)
{
int i, j, k;
printf("please input three number:\n"); //提示用
- 2015越来越好
dcj3sjt126com
歌曲
越来越好
房子大了电话小了 感觉越来越好
假期多了收入高了 工作越来越好
商品精了价格活了 心情越来越好
天更蓝了水更清了 环境越来越好
活得有奔头人会步步高
想做到你要努力去做到
幸福的笑容天天挂眉梢 越来越好
婆媳和了家庭暖了 生活越来越好
孩子高了懂事多了 学习越来越好
朋友多了心相通了 大家越来越好
道路宽了心气顺了 日子越来越好
活的有精神人就不显
- java.sql.SQLException: Value '0000-00-00' can not be represented as java.sql.Tim
feiteyizu
mysql
数据表中有记录的time字段(属性为timestamp)其值为:“0000-00-00 00:00:00”
程序使用select 语句从中取数据时出现以下异常:
java.sql.SQLException:Value '0000-00-00' can not be represented as java.sql.Date
java.sql.SQLException: Valu
- Ehcache(07)——Ehcache对并发的支持
234390216
并发ehcache锁ReadLockWriteLock
Ehcache对并发的支持
在高并发的情况下,使用Ehcache缓存时,由于并发的读与写,我们读的数据有可能是错误的,我们写的数据也有可能意外的被覆盖。所幸的是Ehcache为我们提供了针对于缓存元素Key的Read(读)、Write(写)锁。当一个线程获取了某一Key的Read锁之后,其它线程获取针对于同
- mysql中blob,text字段的合成索引
jackyrong
mysql
在mysql中,原来有一个叫合成索引的,可以提高blob,text字段的效率性能,
但只能用在精确查询,核心是增加一个列,然后可以用md5进行散列,用散列值查找
则速度快
比如:
create table abc(id varchar(10),context blog,hash_value varchar(40));
insert into abc(1,rep
- 逻辑运算与移位运算
latty
位运算逻辑运算
源码:正数的补码与原码相同例+7 源码:00000111 补码 :00000111 (用8位二进制表示一个数)
负数的补码:
符号位为1,其余位为该数绝对值的原码按位取反;然后整个数加1。 -7 源码: 10000111 ,其绝对值为00000111 取反加一:11111001 为-7补码
已知一个数的补码,求原码的操作分两种情况:
- 利用XSD 验证XML文件
newerdragon
javaxmlxsd
XSD文件 (XML Schema 语言也称作 XML Schema 定义(XML Schema Definition,XSD)。 具体使用方法和定义请参看:
http://www.w3school.com.cn/schema/index.asp
java自jdk1.5以上新增了SchemaFactory类 可以实现对XSD验证的支持,使用起来也很方便。
以下代码可用在J
- 搭建 CentOS 6 服务器(12) - Samba
rensanning
centos
(1)安装
# yum -y install samba
Installed:
samba.i686 0:3.6.9-169.el6_5
# pdbedit -a rensn
new password:123456
retype new password:123456
……
(2)Home文件夹
# mkdir /etc
- Learn Nodejs 01
toknowme
nodejs
(1)下载nodejs
https://nodejs.org/download/ 选择相应的版本进行下载 (2)安装nodejs 安装的方式比较多,请baidu下
我这边下载的是“node-v0.12.7-linux-x64.tar.gz”这个版本 (1)上传服务器 (2)解压 tar -zxvf node-v0.12.
- jquery控制自动刷新的代码举例
xp9802
jquery
1、html内容部分 复制代码代码示例: <div id='log_reload'>
<select name="id_s" size="1">
<option value='2'>-2s-</option>
<option value='3'>-3s-</option