Result | TIME Limit | MEMORY Limit | Run Times | AC Times | JUDGE |
---|---|---|---|---|---|
3s | 8192K | 2894 | 1177 | Standard |
We all love recursion! Don't we?
Consider a three-parameter recursive function w(a, b, c):
if a <= 0 or b <= 0 or c <= 0, then w(a, b, c) returns:
1
if a > 20 or b > 20 or c > 20, then w(a, b, c) returns:
w(20, 20, 20)
if a < b and b < c, then w(a, b, c) returns:
w(a, b, c-1) + w(a, b-1, c-1) - w(a, b-1, c)
otherwise it returns:
w(a-1, b, c) + w(a-1, b-1, c) + w(a-1, b, c-1) - w(a-1, b-1, c-1)
This is an easy function to implement. The problem is, if implemented directly, for moderate values of a, b and c (for example, a = 15, b = 15, c = 15), the program takes hours to run because of the massive recursion.
1 1 1 2 2 2 10 4 6 50 50 50 -1 7 18 -1 -1 -1
w(1, 1, 1) = 2 w(2, 2, 2) = 4 w(10, 4, 6) = 523 w(50, 50, 50) = 1048576 w(-1, 7, 18) = 1
This problem is used for contest: 60 183
Submit / Problem List / Status / Discuss
用动态规划做,不知道尾递归优化能不能过。
1 #include <iostream>
2
3 using namespace std;
4
5 int main(void)
6 {
7
8 int a[21][21][21];
9 int i, j, k;
10
11 for (i=0; i<21; i++)
12 {
13 for (j=0; j<21; j++)
14 {
15 a[0][i][j] = 1;
16 a[i][0][j] = 1;
17 a[i][j][0] = 1;
18 }
19 }
20
21 for (i=1; i<21; i++)
22 {
23 for (j=1; j<21; j++)
24 {
25 for (k=1; k<21; k++)
26 {
27 if (i<j && j<k)
28 {
29 a[i][j][k] = a[i][j][k-1]+a[i][j-1][k-1]-a[i][j-1][k];
30 }
31 else
32 {
33 a[i][j][k] = a[i-1][j][k]+a[i-1][j-1][k]+a[i-1][j][k-1]-a[i-1][j-1][k-1];
34 }
35 }
36 }
37 }
38
39
40 while (cin>>i>>j>>k, i!=-1 || j!=-1 || k!=-1)
41 {
42 cout << "w(" << i << ", " << j << ", " << k <<") = " ;
43 if (i<=0 || j<=0 || k<=0)
44 {
45 cout << 1 <<endl;
46 continue;
47 }
48 if (i<=20 && j<=20 && k<=20)
49 {
50 cout << a[i][j][k] << endl;
51 }
52 else
53 {
54 cout << a[20][20][20] << endl;
55 }
56 }
57
58 return 0;
59 }