理想架构的非对称高回退Doherty功率放大器理论与仿真

Doherty理论—理想架构的非对称高回退Doherty功率放大器理论与仿真

参考:
三路Doherty设计
01 射频基础知识–基础概念
Switchmode RF and Microwave Power Amplifiers、

理想架构的Doherty功率放大器(等分经典款)的理论与ADS电流源仿真参考:理想架构的Doherty功率放大器理论与仿真

本文的ADS工程下载:理想架构的非对称高回退Doherty功率放大器理论与仿真

目录

  • Doherty理论---理想架构的非对称高回退Doherty功率放大器理论与仿真
    • 0、高回退Doherty功率放大器
    • 1、非对称的高回退Doherty功率放大器
    • 2、ADS中对非对称DPA特性仿真
        • 2.1 非对称DPA的ADS电路图构建
        • 2.2 非对称DPA的电压电流特性
        • 2.3 非对称DPA的输出阻抗特性
        • 2.4 非对称DPA的回退范围与效率
        • 2.5 其他分配比下的一些特性
    • 3、改进的非对称高回退Doherty功率放大器
    • 4、非对称高回退DPA推导理论

0、高回退Doherty功率放大器

在理想架构的Doherty功率放大器理论与仿真中,已经对平衡的1:1的DPA的理论进行了分析,并在ADS中使用理想的电流源对Doherty的基本原理进行仿真,并对比了传统B类和DPA架构在回退状态下的效率曲线:理想架构的非对称高回退Doherty功率放大器理论与仿真_第1张图片
我们注意到,传统1:1的DPA的回退范围是6dB的,但是对于现代的调制信号,所需要的回退范围越来越大了,对于原生的20MHz的LTE信号,其PAPR到达8、9dB也非常正常,为了使得DPA能够在更大的回退范围内取得高效率,专家们研究出来了非对称高回退Doherty架构。

1、非对称的高回退Doherty功率放大器

在理想架构的Doherty功率放大器理论与仿真已经介绍了经典的DPA的架构,其最前面有一个功率分配器,1:1分配时,我们在DPA饱和功率的四分之一处打开峰值功放,由此获得了6dB的回退范围。
理想架构的非对称高回退Doherty功率放大器理论与仿真_第2张图片
但是,如果功率分配比不是1:1,而是把更多的功率分配给峰值功放,致使峰值功放提前开启,这样不就能获得更高的回退范围了吗?确实是这样的,Switchmode RF and Microwave Power Amplifiers一书中写到了功率分配比和回退范围的对应关系:


理想架构的非对称高回退Doherty功率放大器理论与仿真_第3张图片
功率分配比和回退范围的对应关系表:

功率分配比(载波:峰值) 回退范围
1:1 -6dB
1:2 -9.5dB
1:3 -12dB
1:4 -14dB

2、ADS中对非对称DPA特性仿真

2.1 非对称DPA的ADS电路图构建

使用理想的电流源进行仿真,使用相位-90来等效峰值功放的相位延迟线,此处假设功率分配比为1:2:
理想架构的非对称高回退Doherty功率放大器理论与仿真_第4张图片

2.2 非对称DPA的电压电流特性

假设饱和电压为50V,载波功放的饱和电流为1A,对于1:2的非对称DPA,载波功放会在输入电流为峰值的1/3处达到饱和(为什么是三分之一处之后会给出证明),此时的输出功率为50 * 0.333 * 0.5=8.33W。而当DPA完全达到最高输出功率后,输出功率为(50* 1+50* 2)* 0.5=75W,由此可得功率比为75/8.33=9,因此回退范围为10*log(1/9)=9.5dB,和上面书中理论一致。

但是,由于分配比为1:2,在饱和时峰值功放的输出功率为载波功放的两倍,也就是其输出电流为载波功放的两倍(单管作为压控电流源)。而对于一般的设计情况,我们使用相同的晶体管来设计DPA,这样峰值功放往往会在饱和时过驱动,从而其线性度有所下降:
理想架构的非对称高回退Doherty功率放大器理论与仿真_第5张图片

2.3 非对称DPA的输出阻抗特性

在理想架构的Doherty功率放大器理论与仿真中,介绍了对称DPA的输出阻抗的基本特性,载波功放的输出阻抗随着有源的负载调制从2Ropt逐渐下降到Ropt,而峰值功放的输出阻抗从无穷逐渐下降到Ropt。这是因为在对称DPA结构中,载波功放、峰值功放在饱和时完全对称,各自提供一半的功率。

但是在非对称的1:2结构中,因为峰值功放的饱和电流是载波功放饱和时的两倍,因此峰值功放的饱和输出阻抗为Ropt/2,其结果为:
理想架构的非对称高回退Doherty功率放大器理论与仿真_第6张图片

2.4 非对称DPA的回退范围与效率

在非对称的1:2结构中,回退范围约为9.5,因此其在回退9.5dB时能够达到B类最佳效率78.54%:
理想架构的非对称高回退Doherty功率放大器理论与仿真_第7张图片

2.5 其他分配比下的一些特性

1:3分配下12dB回退:
理想架构的非对称高回退Doherty功率放大器理论与仿真_第8张图片
1:4分配下14dB回退:
理想架构的非对称高回退Doherty功率放大器理论与仿真_第9张图片

3、改进的非对称高回退Doherty功率放大器

但是,由于分配比为1:2,在饱和时峰值功放的输出功率为载波功放的两倍,也就是其输出电流为载波功放的两倍(单管作为压控电流源)。而对于一般的设计情况,我们使用相同的晶体管来设计DPA,这样峰值功放往往会在饱和时过驱动,从而其线性度有所下降。因此,可以使用多峰值管的结构,例如下面的1:1:1分配的DPA结构:
理想架构的非对称高回退Doherty功率放大器理论与仿真_第10张图片
上图的结构实际上的实现效果和1:2的不对称结构类似,因为同样有两倍的能量由峰值功放提供。但是由于存在两个峰值功放均摊了压力,不会进入过饱和状态,并且在1:2时能够实现9dB的回退:
理想架构的非对称高回退Doherty功率放大器理论与仿真_第11张图片
如果使用更多的峰值功放,其结构也是非常类似的:
理想架构的非对称高回退Doherty功率放大器理论与仿真_第12张图片

4、非对称高回退DPA推导理论

你可能感兴趣的:(Doherty,射频功率放大器设计,matlab,硬件工程,射频工程,硬件架构)