- 对抗训练对模型性能有何影响?
借雨醉东风
热点追踪人工智能机器学习深度学习
关注我,持续分享逻辑思维&管理思维&面试题;可提供大厂面试辅导、及定制化求职/在职/管理/架构辅导;推荐专栏《10天学会使用asp.net编程AI大模型》,目前已完成所有内容。一顿烧烤不到的费用,让人能紧跟时代的浪潮。从普通网站,到公众号、小程序,再到AI大模型网站。干货满满。学成后可接项目赚外快,绝对划算。不仅学会如何编程,还将学会如何将AI技术应用到实际问题中,为您的职业生涯增添一笔宝贵的财富
- RuntimeError: CUDA is required but not available for bitsandbytes.
九思Atopos
python
今天想配置大模型的环境,需要用到bitsandbytes这个包,但是遇到报错:RuntimeError:CUDAisrequiredbutnotavailableforbitsandbytes.Pleaseconsiderinstallingthemulti-platformenabledversionofbitsandbytes,whichiscurrentlyaworkinprogress.P
- 细说机器学习算法之ROC曲线用于模型评估
Melancholy 啊
机器学习算法人工智能数据挖掘python
系列文章目录第一章:Pyhton机器学习算法之KNN第二章:Pyhton机器学习算法之K—Means第三章:Pyhton机器学习算法之随机森林第四章:Pyhton机器学习算法之线性回归第五章:Pyhton机器学习算法之有监督学习与无监督学习第六章:Pyhton机器学习算法之朴素贝叶斯第七章:Pyhton机器学习算法之XGBoost第八章:Pyhton机器学习算法之GBDT第九章:Pyhton机器学
- (3-5)文生图模型架构:扩散模型
码农三叔
训练RAG多模态)人工智能python深度学习大模型文生图多模态
3.5扩散模型扩散模型(DiffusionModels)是一类用于生成图像的深度学习模型,近年来在图像生成任务中取得了显著的进展。扩散模型的基本思想是通过逐步添加噪声到数据中,然后学习从噪声中恢复原始数据的过程。3.5.1扩散模型的基本概念扩散模型是一种基于随机过程的生成模型,通过逐步添加和去除噪声,实现从随机噪声到高质量数据的转化,其独特的训练和生成机制使其在图像生成领域表现出色。1.扩散过程扩
- 深入剖析 Scikit-learn 中的 LogisticRegression:参数调优指南
夜色呦
scikit-learn机器学习人工智能
LogisticRegression是一种广泛应用于二分类问题的机器学习算法。在scikit-learn库中,LogisticRegression类提供了一个高效且易于使用的实现。本文将深入探讨LogisticRegression的各种参数,并展示如何通过调整这些参数来优化模型的性能。1.LogisticRegression简介LogisticRegression通过使用逻辑函数将线性回归的输出映
- Python从0到100(八十六):神经网络-ShuffleNet通道混合轻量级网络的深入介绍
是Dream呀
Pythonpython神经网络网络
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 机器学习笔记 - 将音频转换为图像进行分类的机器学习模型
坐望云起
深度学习从入门到精通机器学习深度学习语音识别光谱图Whisper
一、简述语音识别技术是将音频信号转化为文本的过程。其基本原理如下:1.音频录制:首先需要对口语发音进行录制,并将其转化为数字形式的音频文件。2.预处理:对音频信号进行预处理,包括去除杂音干扰、增加音频的信噪比以及消除不必要的语音、噪声等。3.特征提取:特征提取是语音信号处理的一个重要部分,通过对音频数据进行分析,提取其中特有的频率、音调、幅度等数学特征,并转化成数字特征。4.模型训练:在特征提取完
- 深入学习华为IPD流程之华为-PDT经理角色认知培训教材
智慧化智能化数字化方案
项目经理售前工程师技能提升学习华为华为IPD流程pdt经理华为IPDipd产品研发IPD项目管理
本文介绍了PDT经理的角色认知,包括其在IPD体系中的位置、基本角色定位、关键管理活动、能力模型和评估方法以及培养路径。文章指出PDT经理是重量级产品开发团队的管理者,负责产品的商业成功和跨功能部门合作,通过绩效管理加强团队凝聚力,对商业结果负责。重点内容:1.PDT经理角色重要,负责产品商业成功和跨功能部门合作。2.关键管理活动包括制定产品策略、管理交付、提升客户满意度等。3.PDT经理需具备战
- 数字孪生制造:如何通过数字化技术提高产品质量和生产效率
AI天才研究院
大数据AI人工智能自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术随着数字技术的发展、生产线上工具的更新换代,数字孪生制造(Digitaltwins)已经成为制造业的一个热点方向。数字孪生制造可以帮助企业实现软硬件联动的全自动化,同时还可以降低成本、提升品牌知名度和竞争力。它在企业资源方面有巨大的投入,既包括资金、人员、设备等,也包括智能制造系统、算法模型和云计算平台等基础设施建设。虽然数字孪生制造的研发已经进入了新阶段,但其实际应用
- 毕业设计项目 深度学习人体目标检测
bee_dc
毕业设计毕设大数据
1简介今天学长向大家介绍一个机器视觉的毕设项目,基于深度学习的人体目标检测算法研究与实现项目运行效果:毕业设计深度学习行人目标检测系统项目分享:见文末!2目标检测概念普通的深度学习监督算法主要是用来做分类,如图1所示,分类的目标是要识别出图中所示是一只猫。在ILSVRC(ImageNetLargeScaleVisualRecognitionChallenge)竞赛以及实际的应用中,还包括目标定位和
- 表格化数据处理中大语言模型的微调优化策略研究
C7211BA
人工智能自然语言处理大语言模型
论文地址ResearchonFine-TuningOptimizationStrategiesforLargeLanguageModelsinTabularDataProcessing论文主要内容这篇论文的主要内容是研究大型语言模型(LLMs)在处理表格数据时的微调优化策略。具体来说,论文探讨了以下几个关键方面:背景与挑战:大型语言模型(LLMs)在自然语言处理(NLP)领域取得了显著进展,但在处
- 【人工智能】基于Python的机器翻译系统,从RNN到Transformer的演进与实现
蒙娜丽宁
Python杂谈人工智能人工智能python机器翻译
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界机器翻译(MachineTranslation,MT)作为自然语言处理领域的重要应用之一,近年来受到了广泛的关注。在本篇文章中,我们将详细探讨如何使用Python实现从传统的循环神经网络(RNN)到现代Transformer模型的机器翻译系统。文章将从机
- 使用大语言模型在表格化网络安全数据中进行高效异常检测
C7211BA
语言模型web安全人工智能
论文链接Efficientanomalydetectionintabularcybersecuritydatausinglargelanguagemodels论文主要内容这篇论文介绍了一种基于大语言模型(LLMs)的创新方法,用于表格网络安全数据中的异常检测,称为“基于引导式提示的表格异常检测”(TabularAnomalyDetectionviaGuidedPrompts,简称TAD-GP)。该
- 2025美赛数学建模c题思路+模型+代码分享!非机构不卖课(12:51已更新完善Q1模型的代码)
夜信431
机器学习人工智能数学建模大数据python
2025MCMC题思路分析中文版题目翻译在这里先不放了,重点说一下我和队友讨论出来的一个简单思路。题目背景信息排名、金牌、奖牌数量:奥运会奖牌榜的核心指标。奖牌预测方法:强调基于参赛运动员名单而非历史奖牌数据进行预测。数据限制:模型和分析必须仅使用提供的五个数据文件,所以好好想想到时候伟大教练应该怎么考虑(data_dictionary.csv,summerOly_athletes.csv,sum
- 备战美赛!2025美赛数学建模C题模拟预测!用于大家练手模拟!
灿灿数模
数学建模
完整的思路代码模型见文末2025美赛数学建模C题模拟题:城市交通拥堵指数的预测与管理策略背景随着全球城市化进程的加快,交通拥堵问题成为城市发展的重要挑战之一。交通拥堵不仅影响居民出行效率,还增加了能源消耗和碳排放。近年来,各大城市开始尝试通过实时数据监控和人工智能技术对交通拥堵进行预测和管理。然而,由于城市交通系统的复杂性,现有方法在实际应用中仍面临诸多挑战。任务作为一名数据分析专家,你的任务是基
- (尚硅谷 java 学习 b 站大学版)Day11 面向对象基础知识初入门
亢从文_Jackson
java学习python
四、面向对象(上)终于到面向对象了,Java语言的重中之重奥利给!!!Java面向对象学习的三条主线:1、Java类及类的成员:属性、方法、构造器;代码块内部类2、面向对象三大特征:封装、继承、多态性、(抽象性)3、其他关键字:this\super\static\final\abstract\interface\package…4.1面向过程(POP)与面向对象(OOP)面向过程:强调是功能行为,
- AI计算的未来:中心化与去中心化的博弈
智识微光Intelligence
人工智能去中心化区块链
引言人工智能(AI)技术的迅猛发展正在全球计算格局中。最新发布的DeepSeekr1模型,以远低于传统大模型的成本实现了相当水平的推理能力,甚至能够在工作站上本地运行。一次突破AI计算正在经历从中心化(云计算)到去中心化(本地推理)的重大转变。这种变化不仅影响AI产业的商业模式,还可能构建全球计算基础设施、经济利益格局,并加速人工超级智能(ASI)的到来。因此,本文将探讨人工智能训练成本的降低、推
- 2025数学建模美赛C题【Models for Olympic Medal Tables】第一问
步入烟尘
2025数学建模美赛C题2025数学建模美赛数学建模奥运会历史奖牌
本文为个人解题笔记,仅供参考学习。本文C题的第一问。其他问题均在本专栏内,订阅一次,全部可见。文章目录问题1解题全流程解题完整过程:建立预测奥运会奖牌数的数学模型1.数据分析与清理1.1数据来源与结构1.2数据清理2.探索性数据分析(EDA)2.1国家奖牌分布趋势2.2奖牌与赛事数量的关系2.3主办国优势分析3.模型建立3.1奖牌数预测模型3.2奖牌首次获得预测模型3.3奖牌分布与赛事类型关联模型
- 2025年美国大学生数学建模竞赛C题思路(对每题分析)
FFMXjy
数学建模学习-传统算法机器学习深度学习系列课程数学建模美赛美国大学生数学建模
2025年美国大学生数学建模竞赛C题思路开发奖牌数预测模型1.目标:建立一个模型来预测每个国家的奖牌数,特别是金牌和总奖牌数。步骤:2.使用提供的summerOly_athletes.csv和summerOly_medal_counts.csv数据。3.清理数据,处理缺失值和异常值。4.提取有用的特征,如国家、年份、项目、奖牌类型等。5.选择适当的机器学习算法,如线性回归、随机森林或梯度提升树。6
- DeepSeek 推出全新推理模型 R1-Lite 预览版
三花AI
三花AI人工智能
DeepSeek全新研发的推理模型预览版DeepSeek-R1-Lite现已正式上线网页版。R1系列模型采用强化学习训练,推理过程中包含大量反思和验证,思维链长度可达数万字。该系列模型在数学、代码以及各种复杂逻辑推理任务上,取得了媲美o1-preview的推理效果。目前,DeepSeek-R1-Lite仍处于迭代开发阶段,仅支持网页使用,暂不支持API调用。官方表示,正式版DeepSeek-R1模
- IT词汇量
nshkfhwr
数学建模php开发语言
■□Aaccumulatorn.1)累加器,累加计数器;2)蓄电池actuatorn.执行器,执行元件;致动器;激励器;执行机构■Actuatorn.执行器,执行元件,是SpringBoot四大组件之一(即starters,autoconfigurer,actuator,springboot-cli)Agendan.议程agentn.代理,代理人,经纪人aggregationn.聚合;■Aggre
- 探索未来AI:飞桨大模型套件PaddleFleetX引领技术新高度
窦育培
探索未来AI:飞桨大模型套件PaddleFleetX引领技术新高度PaddleFleetX飞桨大模型开发套件,提供大语言模型、跨模态大模型、生物计算大模型等领域的全流程开发工具链。项目地址:https://gitcode.com/gh_mirrors/pa/PaddleFleetX在人工智能的快速发展中,大模型已经成为推动技术创新的重要力量。如今,我们有幸向您推荐一个全新的开源项目——Paddle
- 跨平台物联网漏洞挖掘算法评估框架设计与实现文献综述之GMN
XLYcmy
漏洞挖掘物联网网络安全漏洞挖掘跨架构静态检测图神经网络项目报告
2.4Gemini和GMN我们采用了两种方式:Gemini和GMN。2.4.2GMN图神经网络(GraphNeuralNetworks-GNNs)是一种用于学习结构化数据及相关预测问题的方法。节点的表示被用于节点分类或生成图向量再用于分类。GMN模型针对图的相似性学习问题,提出了一种使用GNNs将图嵌入到向量空间,并通过交叉图注意机制来计算相似度分数以关联图之间的相似性的模型。GMN模型不是独立地
- 【TVM教程】为 Mobile GPU 自动调优卷积网络
HyperAI超神经
TVM人工智能机器学习TVM编程编译器GPUCPU
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:LianminZheng,EddieYan针对特定设备的自动调优对于获得最佳性能至关重要。本文介绍如何调优整个卷积网络。TVM中MobileGPU的算子实现是以template形式编写的。该template有许多可调参数(tile因子
- 深度学习篇---数据存储类型
Ronin-Lotus
深度学习篇深度学习人工智能学习笔记CPython数据类型
文章目录前言第一部分:C语言中的数据存储类型1.char(通常是8位)优点缺点2.short(通常是16位)优点缺点3.int(通常是32位)优点缺点4.long(通常是32位或64位)优点缺点5.longlong(通常是64位)优点缺点6.float(通常是32位)优点缺点7.double(通常是64位)优点缺点第二部分:Python中的数据存储类型1.int(整数类型)优点缺点2.float(
- Python入门教程丨3.2 再见Excel!用Python这5个模块,我把3天工作压缩到3分钟
凌小添
Python教程pythonexcel开发语言
⭐还在用Excel手动算均值方差?还在为海量数据统计熬夜加班?用Python这5把「数据手术刀」写一次代码,就能直接复用,专业报告自动生成!本期内容:模块核心功能应用场景math数学计算几何、物理模拟random生成随机数据游戏、抽样测试statistics统计分析回归分析、市场调研numpy数组与矩阵运算图像处理、机器学习pandas表格数据处理与分析金融分析、数据清洗一、基础数学库1.1mat
- Cursor 的 AI 模型:代码生成与理解的原理
drebander
AI编程Cursor
引言在当今的软件开发领域,人工智能(AI)正在迅速改变开发者的工作方式。Cursor作为一款智能编程助手,通过集成先进的AI模型,为开发者提供了强大的代码生成、补全和优化功能。Cursor的核心竞争力在于其AI模型的能力,这些模型不仅能够理解代码的上下文,还能生成高质量的代码建议。本文将深入探讨Cursor使用的AI模型(如GPT系列或其他定制模型),并解析这些模型如何理解代码上下文并生成高质量的
- 使用Ollama部署deepseek大模型
使用Ollama部署deepseek大模型前置条件使用英伟达显卡下载cuda驱动https://developer.nvidia.com/cuda-downloadsOllamaOllama官方版:https://ollama.com/我的显卡在Windows电脑上面所以使用Windows的安装方式去安装若你的显卡是在Linux上面可以使用如下命令安装curl-fsSLhttps://ollama
- AI对接之对话API对接指南
我码玄黄
AI探索AI工具教你一招人工智能AIAI对接前端
AI对接之对话API对接指南本系列AI的API对接均以DeepSeek为例,其他大模型的对接方式类似。在人工智能领域,对话系统是连接人与机器的重要桥梁。DeepSeekAPI提供了一个强大的对话补全功能,使得开发者能够轻松地将智能对话集成到自己的应用中。本文将详细介绍如何对接DeepSeek的对话补全API,并展示几种典型的使用形式。1.API概览DeepSeek的对话补全API通过一个POST请
- AI人工智能代理工作流 AI Agent WorkFlow:在物流与供应链中的应用
AI架构设计之禅
大数据AI人工智能AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能代理工作流AIAgentWorkFlow:在物流与供应链中的应用1.背景介绍1.1物流与供应链行业面临的挑战物流与供应链行业是现代经济的重要组成部分,涉及原材料采购、产品生产、仓储配送、销售等多个环节。随着全球化进程加快,供应链日益复杂,企业面临着成本控制、效率提升、风险管理等诸多挑战。传统的物流与供应链管理模式已难以适应市场变化,亟需引入新技术和创新方法。1.2人工智能在物流供应链中
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found