- 循环队列C语言实现
Helpsen
数据结构与算法c语言开发语言后端
循环队列C语言实现特性:先进先出(FirstInFirstOut=FIFO),取数从队列的开头取,存储从队列尾部存。第一个元素又称首元素,最后一个元素又称尾元素。Linux系统三大队列:消息队列:进程间通信的一种手段。工作队列:延后执行的一种手段。等待队列:随时随地让进程休眠并且让进程随时随地被唤醒。/*循环队列*/#include#include/*声明描述队列属性的结构体*/typedefst
- 构建一个查询分析系统
AWsggdrg
数据库python
技术背景介绍在构建一个查询分析系统时,需要能够加载文档、使用聊天模型、生成嵌入、创建向量存储并执行检索。这些过程的目标是将用户输入的查询优化,以实现更为精准的检索结果。本文将通过一个端到端的示例展示如何使用查询分析提升检索结果的相关性。我们将着眼于如何对LangChain的YouTube视频进行检索,并通过查询分析解决原始用户问题直接传递给搜索引擎时可能出现的失败模式。核心原理解析查询分析的核心在
- MDX语言的编程范式
BinaryBardC
包罗万象golang开发语言后端
MDX语言的编程范式引言MDX(MultidimensionalExpressions)是一种查询语言,主要用于在多维数据集中检索数据。这种语言广泛应用于商业智能(BI)领域,尤其是在与分析服务(如MicrosoftAnalysisServices)相关的上下文中。MDX语言提供了一个强大的语法,使得开发者能够以灵活的方式操作多维数据模型。本文将深入探讨MDX的编程范式,从基本语法、查询结构到高级
- 李开复与零一万物:AI创业的务实之道,以及AI写代码工具的崛起
前端
2025年伊始,AI领域便掀起一阵波澜。零一万物,这家备受瞩目的AI公司,其人员变动和业务拆分引发了广泛关注。李开复,这位在AI领域深耕多年的资深人士,对此做出了回应,其核心观点值得我们深思:在AI领域,盲目追求规模并非最佳策略。这不仅关乎零一万物,也为众多AI初创公司提供了宝贵的经验。李开复观点解读:理性决策,而非盲目扩张李开复认为,初创公司“负担不起”超大模型的预训练。这“负担不起”并非仅仅指
- AI 2025:技术飞跃与应用鸿沟——AI代码生成器引领未来?
前端
2024年,人工智能技术经历了前所未有的飞跃。大型语言模型(LLM)的能力显著提升,成本大幅下降,多模态应用成为主流。然而,令人担忧的是,技术进步与实际应用普及之间存在着巨大的鸿沟。“智能体”等概念被热炒,但实际应用却远未达到预期。本文将探讨这种技术进步与应用普及之间的矛盾,并分析弥合鸿沟的关键所在。技术的突飞猛进2024年,AI技术在多个方面取得了突破性进展。首先,模型能力得到了显著提升。GPT
- 软件架构的康威定律:AI如何重构团队协作模式
前端
1.引言康威定律,一个简洁却深刻的观察:任何组织设计出的系统,其结构都与组织自身的沟通结构保持一致。这意味着,一个团队的沟通方式、组织结构直接影响着最终产品的架构。这在软件开发领域尤为明显。一个沟通效率低下的团队,往往会设计出复杂、难以维护的软件系统。而近年来,人工智能技术的飞速发展为解决这一问题提供了一种新的途径。本文将探讨AI工具,特别是AI辅助代码生成工具,如何帮助团队克服康威定律的限制,重
- Python中的Pipeline快速教学、
Coding Is Fun
python开发语言
在Python中,Pipeline通常指的是机器学习工作流中的流水线,尤其是在使用scikit-learn库时。Pipeline允许你将多个数据处理步骤和模型训练步骤串联起来,形成一个有序的工作流程。这不仅使代码更简洁,还能确保在训练和预测时一致的数据处理。以下是一个快速教学,帮助你掌握Python中Pipeline的核心概念和使用方法。目录安装和导入必要的库Pipeline的基本概念创建一个简单
- 面试官:谈谈你对JavaScript原型链的理解
程序员
在前端开发领域的每一次深入交流中,JavaScript的原型链总是那个绕不开的技术高地。它不仅是理解JavaScript对象模型的关键,也是评估前端开发者技术深度和广度的重要指标。引言:为何原型链如此重要?在JavaScript中,原型链是实现继承的核心机制。它允许对象通过原型对象间接地共享属性和方法,这种机制不仅减少了代码的冗余,还提高了代码的可复用性和灵活性。因此,掌握原型链的原理和应用,对于
- 实操数据预处理:从理论到实践的基础步骤
炼丹侠
python机器学习人工智能
在快速发展的人工智能领域,数据不仅是基础,更是推动技术创新的关键力量。高质量的数据集是构建高效、准确模型的前提。本文将全面深入探讨数据预处理的各个环节,从基础的数据清洗到复杂的数据增强,再到高效的Python应用实践,为你提供一站式的数据处理解决方案。无论你的经验如何,这篇文章都将成为你宝贵的资源。数据清洗:打好数据质量的基础数据清洗是提升数据质量的首要步骤,涵盖了如下几个关键操作:缺失值的智能处
- [如何应对AI API模型弃用:迁移与替代方案策略]
wad485486aw
人工智能python
技术背景介绍在AI技术迅猛发展的背景下,API模型的更新和弃用成为常态。尤其是像Anthropic这样的公司,随着推出更安全、更强大的模型,旧版本的模型往往会被淘汰。这意味着依赖于这些模型的应用程序需要定期更新以保证正常运行。核心原理解析Anthropic模型生命周期包括几个阶段:活跃:模型得到完全支持并推荐使用。遗留:模型不再接收更新,并可能在未来被弃用。已弃用:模型不再对新用户开放,但在退役前
- simulink建模与仿真代做matlab程序代编设计帮做电力电子电机控制
matlabgoodboy
matlab开发语言
一、Simulink建模与仿真在电力电子与电机控制中的应用Simulink简介Simulink是Matlab中的一个重要组件,以其强大的图形化建模和仿真能力著称。它提供了一个直观的图形用户环境,用户可以通过拖放功能块来构建系统模型,无需编写大量代码。这使得Simulink成为控制系统、信号处理、通信系统等领域广泛应用的工具。在电力电子中的应用在电力电子领域中,Simulink可以用于建立电力转换器
- 使用Anthropic API的入门指南
dqw41111d
microsoftpython
使用AnthropicAPI的入门指南在现代AI应用中,API提供了一种强大的方式来访问复杂的AI服务。Anthropic提供了一组强大的API来执行各种AI任务。本文将带您深入了解如何使用AnthropicAPI进行AI应用开发。技术背景介绍AnthropicAPI允许开发者以简单的HTTP请求模式与AI模型进行交互,返回的结果可以被用于多种场景,如文本生成、情感分析等。通过API,开发者可以避
- Mysql数据库和Sql语句
Jessica小戴
数据库mysqlsql
数据库管理:sql语句:数据库用来增删改查的语句(重要)备份:数据库的数据进行备份主从复制、读写分离、高可用(重要)Mysql数据库和Sql语句一、Mysql数据库1、数据库:组织、存储、管理数据的仓库2、数据库的管理系统(DBMS):实现对数据有效组织、管理和存取的系统软件3、数据库软件:mysql、oracle(大数据系统一般使用、大企业使用)、sql-server、MariaDB也是mysq
- GPU介绍之GPU监控中,如何确定GPU忙碌程度
借雨醉东风
热点追踪人工智能大数据
关注我,持续分享逻辑思维&管理思维&面试题;可提供大厂面试辅导、及定制化求职/在职/管理/架构辅导;推荐专栏《10天学会使用asp.net编程AI大模型》,目前已完成所有内容。一顿烧烤不到的费用,让人能紧跟时代的浪潮。从普通网站,到公众号、小程序,再到AI大模型网站。干货满满。学成后可接项目赚外快,绝对划算。不仅学会如何编程,还将学会如何将AI技术应用到实际问题中,为您的职业生涯增添一笔宝贵的财富
- HarmonyOS状态管理之组件通讯
秃顶老男孩.
harmonyos华为ui
状态管理(组件通讯)1:概述在使用状态管理之前,我们所构建的页面大多数为静态页面,如果希望构建一个动态的,有交互的界面,就要引用‘状态’的概念状态的概念:在ArkUI框架中,UI是程序运行的结果,用户构建了一个UI模型,其中运行时的状态为参数,当参数改变时,UI作为返回的结果,也会随之发生了改变,这些运行的变化所带来的UI重新渲染,在ArkUI中统称为状态管理机制(什么是状态管理机制)自定义组件拥
- 探索前沿AI技术:什么是LLM框架?什么是Agent应用?什么是Workflow架构?一篇文章带你全部搞懂
大模型学习路线
大模型人工智能架构llmagentai大模型agi
探索前沿AI技术:什么是LLM框架?什么是Agent应用?什么是Workflow架构?前排提示,文末有大模型AGI-CSDN独家资料包哦!文章目录探索前沿AI技术:什么是LLM框架?什么是Agent应用?什么是Workflow架构?摘要引言正文LLM框架:定义与重要性什么是LLM框架?详细的知识点讲解和分析详细的代码案例详细的操作命令Agent应用:智能与自动化什么是Agent应用?知识点讲解代码
- 大模型介绍
詹姆斯爱研究Java
spring
大模型(LargeModel)指的是拥有庞大参数量的机器学习模型。由于具有更多的参数,大模型能够更好地拟合复杂的数据和模式,从而提供更准确的预测和更好的性能。大模型的参数量通常远远超过常规模型,可以达到数百万甚至数十亿个参数。这些参数通常通过深度神经网络(DeepNeuralNetwork)来表示,包括多个隐藏层和大量的神经元。大模型的训练需要大量的计算资源和数据。通常,它们需要在多个GPU或TP
- 基于深度学习的极端天气预测全解析与实战指南:基于MetNet 模型
AI_DL_CODE
深度学习人工智能MetNet天气预测python
摘要:本文全面解析了基于深度学习的极端天气预测,重点介绍了MetNet模型。首先,文章阐述了极端天气预测的重要性和传统天气预报的局限性。接着,详细介绍了MetNet模型的基本架构、特点以及与其他气象预测模型的对比。然后,通过实战案例展示了MetNet模型在极端降雨天气预测中的应用,包括数据准备、模型搭建与训练、模型评估与预测。最后,文章总结了MetNet模型的优势与挑战,并展望了深度学习在气象领域
- 深度解析:Python与TensorFlow在日平均气温预测中的应用——LSTM神经网络实战
AI_DL_CODE
python神经网络tensorflowLSTM气温预测RNN
文章目录1.引言1.1研究背景与意义1.2研究目标与问题定义2.概念解析2.1Python语言简介2.2TensorFlow框架概述2.3LSTM神经网络原理3.原理详解3.1时间序列分析基础3.1.1时间序列的组成3.1.2时间序列分析方法3.2LSTM在时间序列分析中的应用3.2.1LSTM的优势3.2.2LSTM的结构3.3日平均气温预测的数学模型3.3.1ARIMA模型3.3.2LSTM模
- MPP-大规模并行处理
quanzaiwoxin1
1、什么是MPP?MPP(MassivelyParallelProcessing),即大规模并行处理,在数据库非共享集群中,每个节点都有独立的磁盘存储系统和内存系统,业务数据根据数据库模型和应用特点划分到各个节点上,每台数据节点通过专用网络或者商业通用网络互相连接,彼此协同计算,作为整体提供数据库服务。非共享数据库集群有完全的可伸缩性、高可用、高性能、优秀的性价比、资源共享等优势。简单来说,MPP
- 国自然青年项目|基于多模态影像组学的乳腺癌分子分型预测研究|基金申请·25-01-20
罗小罗同学
基金申请医学人工智能人工智能国自然
小罗碎碎念今天和大家分享一份国自然青年项目,项目执行期为2021-2023年,直接费用为24万。项目聚焦乳腺癌分子分型预测,综合运用多模态组学数据、影像组学技术和深度学习技术。研究内容包括跨模态医学图像分割、多模态特征提取与融合、模型设计与系统研发。通过提出一系列创新算法,如基于类别中心原型对齐器的图像分割算法、基于自注意力机制与生成对抗网络的聚类算法等,实现了对乳腺癌分子分型的高精度预测,并开发
- 文献综述相关ChatGPT提示词分享
AIWritePaper官方账号
PromptChatGPTAIWritePaperchatgpt人工智能数据分析AIGC信息可视化数据挖掘prompt
文献综述ChatGPT可以帮助提高文献综述的有效性和全面性。ChatGPT可以高效搜索和审查与宝子们课题研究相关的文献资料来源。一些给力的插件工具还可以帮助您总结复杂的研究论文并提取信息以更快更好地消化信息。合理的运用ChatGPT和GPTs可以提高文献综述的清晰度和质量,使其更加全面和有洞察力。文献综述提示词*131.在[人工智能相关]领域中,主要发现有哪些?2.在[人工智能相关]领域中,引用次
- 使用 PyTorch 从头开始构建您自己的 Llama 3 架构
子然在打码
pytorchllama人工智能
https://www.aisolink.com/build-your-own-llama-3-architecture-from-scratch-using-pytorch全文摘要本文提供了一个详细的指南,介绍如何使用PyTorch从头开始构建Llama3模型的完整架构,并对自定义数据集进行训练和推理。文章涵盖了构建输入块、解码器块和输出块的步骤,并提供了相应的代码示例。最终目标是构建一个功能齐
- 大模型的RAG微调与Agent:提升智能代理的效率与效果
WeeJot
人工智能人工智能
目录编辑引言RAG模型概述检索阶段生成阶段RAG模型的微调数据集选择损失函数设计微调策略超参数调整RAG模型在智能代理中的应用客户服务信息检索内容创作决策支持:结论引言在人工智能的快速发展中,大型预训练模型(LLMs)已经成为推动技术进步的关键力量。这些模型通过在海量数据上的预训练,掌握了丰富的语言知识和模式识别能力,从而在多种自然语言处理任务上展现出卓越的性能。然而,预训练模型的通用性也意味着它
- 深入浅出的聊聊 Agent
程序员鑫港
人工智能数据库知识图谱深度学习机器学习
今天,我想和你一起聊聊Agent(智能体),从它的起源、特点,到关键的知识点,以及现实中的应用和实现原理。希望能帮助你更深入地了解这个既有趣又重要的领域。前排提示,文末有大模型AGI-CSDN独家资料包哦!一、Agent的起源1.什么是Agent你可能会问,Agent到底是什么呢?简单来说,Agent就是能够在一定环境中自主感知、决策和行动的实体。它可以是一个软件程序、一个机器人,甚至是一个复杂的
- 边缘计算应用十大领域
黑石云
边缘计算
边缘计算解决了互联网的网速问题,作为实现边缘计算的基础,那边缘计算是5G与产业互联网、物联网时代的重要技术支撑,也正迎来广阔的增长空间。那么现在我们生活中有哪些领域正在使用边缘计算呢?今天我们来盘点一下我们身边正在使用边缘计算技术的十大领域。第一,智能交通领域,这个领域即将展现出巨大的价值。它们能够在边缘端直接进行实时数据的处理,无论是交通的流量还是交通的事故,这些摄像头都能够精准的捕捉并且分析相
- 交换机与路由器的区别
黑石云
边缘计算
交换机和路由器是网络中的两种关键设备,它们各自承担不同的功能,主要区别体现在以下几个方面:一、工作层次与功能交换机:工作层次:交换机主要工作在OSI模型的第二层,即数据链路层。功能:交换机用于在局域网(LAN)内的不同设备之间进行数据的转发和交换。它通过学习和转发数据帧的方式来实现多个设备之间的通信,能够根据数据包的MAC地址进行数据的无冲突传输,提高网络传输的效率和稳定性。路由器:工作层次:路由
- 【LLM】Ollama:本地大模型 WebAPI 调用
T0uken
python开发语言
Ollama快速部署安装Docker:从Docker官网下载并安装。部署Ollama:使用以下命令进行部署:dockerrun-d-p11434:11434--nameollama--restartalwaysollama/ollama:latest进入容器并下载qwen2.5:0.5b模型:进入Ollama容器:dockerexec-itollamabash在容器内下载模型:ollamapull
- 26. 【.NET 8 实战--孢子记账--从单体到微服务】--需求更新--用户注销、修改用户名、安全设置
喵叔哟
.NET8安全开发语言
在实际开发过程中,项目需求的变更和增加是常见的情况,因此这篇文章我们就模拟一下项目需求新增的情况。一、需求项目经理今天提出了新的功能,需要增加重置密码、安全设置、修改用户名、注销账户这四个功能,这四个功能必须是独立的(别问为什么用“必须”,有些产品经理就这么离谱),经过讨论整理出了如下大的需求。编号需求说明1重置密码1.输入旧密码、新密码和确认密码;2.旧密码需要验证。2安全设置1.更新邮箱和手机
- 渗透测试之webshell 蚁剑 流量分析 特性分析 抓包分析
浩浩测试一下
网络安全安全系统安全web安全安全架构网络攻击模型
目录蚁剑是什么特性简介:蚁剑流量特征两大特征流量分析分析UserAgent数据内容解码分析总结蚁剑是什么蚁剑(AntSword)是一款开源的跨平台WebShell管理工具特性简介:AntSword(蚁剑)是一款开源的网络安全工具,常用于网络渗透测试和攻击。它可以远程连接并控制被攻击计算机,执行命令、上传下载文件等操作。蚁剑与网站进行数据交互的过程中发送的数据是经过编码器编码后再发送支持的编码方式有
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不