iOS 源码分析 Class 本质,objc_class,class_rw_t,class_ro_t 分析

iOS 源码分析 Class 本质,objc_class,class_rw_t,class_ro_t 分析

我们先来看下源码内部对clas的定义

typedef struct objc_class *Class;

可以看出来,他就是一个 objc_class 指针


struct objc_class : objc_object {
    // Class ISA;
    Class superclass;
    cache_t cache;             // formerly cache pointer and vtable
    class_data_bits_t bits;    // class_rw_t * plus custom rr/alloc flags

    class_rw_t *data() { 
        return bits.data();
    }


我们摘出来重要的部分,可以看出来,我们的 objc_class 是继承 objc_object 结构体


struct objc_object {
private:
    isa_t isa;

我们的 objc_object 有 isa 指针,所以我们的 class 也有 isa 指针,这就是为什么 我们可以通过我们的类对象找到我们的元类的原因,因为我们的额class 有 isa 指针,如果没有isa指针是不行的,然后还有个 superclass class 指针,只用来指向当前类的父类的,苹果有一张图,画了父类和元类的关系,指向,class 的这个结构体,完全可以诠释那张图,cache_t 我之前的文章也讲过,是加快查找效率的,可以看看我那篇文章,然后,下一个很重要的东西就是 bits

struct class_data_bits_t {

    // Values are the FAST_ flags above.
    uintptr_t bits;

bits 可以理解为一个指针,里面存放着 class_rw_t 和 class_ro_t 的地址,之前文章也有说过,苹果为了节省空间,让一个指针里面保存更多的信息,到时候通过按位与运算,取出不同的值就行。

比如当我们取出来我们class的data的时候,实际上就是取出来这个类的一些信息

 class_rw_t *data() { 
        return bits.data();
    }

可以看到,返回的是一个 class_rw_t 结构体,然后调用 bits.data();,我们看下实现

class_rw_t* data() {
        return (class_rw_t *)(bits & FAST_DATA_MASK);
    }

这段代码什么意思呢?就是就是找到 bits 这个指针中 class_rw_t 这个结构体对应的那个data的值,通过按位与运算,#define FAST_DATA_MASK 0x00007ffffffffff8UL 其实就是取出来,bits中第3-64位,然后就拿到了我们想要的值,这个设计是不是很牛,然后我们看下 class_rw_t 这个结构体


struct class_rw_t {
    // Be warned that Symbolication knows the layout of this structure.
    uint32_t flags;
    uint32_t version;

    const class_ro_t *ro;

    method_array_t methods;
    property_array_t properties;
    protocol_array_t protocols;

    Class firstSubclass;
    Class nextSiblingClass;


从结构体重可以看到,累的 方法,属性,协议,都保存在这里,然后还有个 const class_ro_t *ro; 这个是什么呢?



struct class_ro_t {
    uint32_t flags;
    uint32_t instanceStart;
    uint32_t instanceSize;
#ifdef __LP64__
    uint32_t reserved;
#endif

    const uint8_t * ivarLayout;
    
    const char * name;
    method_list_t * baseMethodList;
    protocol_list_t * baseProtocols;
    const ivar_list_t * ivars;

    const uint8_t * weakIvarLayout;
    property_list_t *baseProperties;


1. baseMethodList 方法列表
2. baseProtocols 协议列表
3. ivars 成员变量列表
4. baseProperties 属性列表
5. weakIvarLayout weak 成员变量内存布局
6. ivarLayout 成员变量 ivar 内存布局,是放在我们的 io 里面的,并且是 const 不允许修改的,也就是说明,我们的 成员变量布局,在编译阶段就确定了,内存布局已经确定了,在运行时是不可以修改了,这就说明了,为什么运行时不能往类中动态添加成员变量。

class_ro_t 的意思是 readonly 的,在编译阶段就已经确定了,不可以修改。

class_ro_t 是只读的,是再编译的时候,将累的属性,方法,协议和成员变量,添加到我们的 class_ro_t 中,然后运行的时候,会动态的创建 class_rw_t 然后将 class_ro_t 和分类中的属性,协议方法存储到 class_rw_t 中,并进行排序,分类中的存储在数组的前部,原始类信息,存储在数组的后面,class_ro_t 是只能的,在运行时是不可以添加进去的

class_rw_t 是运行时可以添加的,比如分类中的方法会在运行时,添加到 class_rw_t 的 method_array_t methods; 中去,可以看到,我们的 class_rw_t 中没有成员变量的信息,成员变量的信息是以编译就确定添加到 class_ro_t 中去,并且只读

接着跟着源码分析下


static Class realizeClassWithoutSwift(Class cls)
{
    runtimeLock.assertLocked();

    const class_ro_t *ro;
    class_rw_t *rw;
    Class supercls;
    Class metacls;
    bool isMeta;

    if (!cls) return nil;
    if (cls->isRealized()) return cls;
    assert(cls == remapClass(cls));

    // fixme verify class is not in an un-dlopened part of the shared cache?

    ro = (const class_ro_t *)cls->data();
    if (ro->flags & RO_FUTURE) {
        // This was a future class. rw data is already allocated.
        rw = cls->data();
        ro = cls->data()->ro;
        cls->changeInfo(RW_REALIZED|RW_REALIZING, RW_FUTURE);
    } else {
        // Normal class. Allocate writeable class data.
        rw = (class_rw_t *)calloc(sizeof(class_rw_t), 1);
        rw->ro = ro;
        rw->flags = RW_REALIZED|RW_REALIZING;
        cls->setData(rw);
    }

    isMeta = ro->flags & RO_META;

    rw->version = isMeta ? 7 : 0;  // old runtime went up to 6


    // Choose an index for this class.
    // Sets cls->instancesRequireRawIsa if indexes no more indexes are available
    cls->chooseClassArrayIndex();

    if (PrintConnecting) {
        _objc_inform("CLASS: realizing class '%s'%s %p %p #%u %s%s",
                     cls->nameForLogging(), isMeta ? " (meta)" : "", 
                     (void*)cls, ro, cls->classArrayIndex(),
                     cls->isSwiftStable() ? "(swift)" : "",
                     cls->isSwiftLegacy() ? "(pre-stable swift)" : "");
    }

    // Realize superclass and metaclass, if they aren't already.
    // This needs to be done after RW_REALIZED is set above, for root classes.
    // This needs to be done after class index is chosen, for root metaclasses.
    // This assumes that none of those classes have Swift contents,
    //   or that Swift's initializers have already been called.
    //   fixme that assumption will be wrong if we add support
    //   for ObjC subclasses of Swift classes.
    supercls = realizeClassWithoutSwift(remapClass(cls->superclass));
    metacls = realizeClassWithoutSwift(remapClass(cls->ISA()));

#if SUPPORT_NONPOINTER_ISA
    // Disable non-pointer isa for some classes and/or platforms.
    // Set instancesRequireRawIsa.
    bool instancesRequireRawIsa = cls->instancesRequireRawIsa();
    bool rawIsaIsInherited = false;
    static bool hackedDispatch = false;

    if (DisableNonpointerIsa) {
        // Non-pointer isa disabled by environment or app SDK version
        instancesRequireRawIsa = true;
    }
    else if (!hackedDispatch  &&  !(ro->flags & RO_META)  &&  
             0 == strcmp(ro->name, "OS_object")) 
    {
        // hack for libdispatch et al - isa also acts as vtable pointer
        hackedDispatch = true;
        instancesRequireRawIsa = true;
    }
    else if (supercls  &&  supercls->superclass  &&  
             supercls->instancesRequireRawIsa()) 
    {
        // This is also propagated by addSubclass() 
        // but nonpointer isa setup needs it earlier.
        // Special case: instancesRequireRawIsa does not propagate 
        // from root class to root metaclass
        instancesRequireRawIsa = true;
        rawIsaIsInherited = true;
    }
    
    if (instancesRequireRawIsa) {
        cls->setInstancesRequireRawIsa(rawIsaIsInherited);
    }
// SUPPORT_NONPOINTER_ISA
#endif

    // Update superclass and metaclass in case of remapping
    cls->superclass = supercls;
    cls->initClassIsa(metacls);

    // Reconcile instance variable offsets / layout.
    // This may reallocate class_ro_t, updating our ro variable.
    if (supercls  &&  !isMeta) reconcileInstanceVariables(cls, supercls, ro);

    // Set fastInstanceSize if it wasn't set already.
    cls->setInstanceSize(ro->instanceSize);

    // Copy some flags from ro to rw
    if (ro->flags & RO_HAS_CXX_STRUCTORS) {
        cls->setHasCxxDtor();
        if (! (ro->flags & RO_HAS_CXX_DTOR_ONLY)) {
            cls->setHasCxxCtor();
        }
    }
    
    // Propagate the associated objects forbidden flag from ro or from
    // the superclass.
    if ((ro->flags & RO_FORBIDS_ASSOCIATED_OBJECTS) ||
        (supercls && supercls->forbidsAssociatedObjects()))
    {
        rw->flags |= RW_FORBIDS_ASSOCIATED_OBJECTS;
    }

    // Connect this class to its superclass's subclass lists
    if (supercls) {
        addSubclass(supercls, cls);
    } else {
        addRootClass(cls);
    }

    // Attach categories
    methodizeClass(cls);

    return cls;
}

我们在 alloc 的时候,会调用上面的方法,然后紧接着有个判断

    // This was a future class. rw data is already allocated.
        rw = cls->data();
        ro = cls->data()->ro;
        cls->changeInfo(RW_REALIZED|RW_REALIZING, RW_FUTURE);
    } else {
        // Normal class. Allocate writeable class data.
        rw = (class_rw_t *)calloc(sizeof(class_rw_t), 1);
        rw->ro = ro;
        rw->flags = RW_REALIZED|RW_REALIZING;
        cls->setData(rw);
    }

判断我们的rw是否创建过了,如果没有,我们会创建一个rw的结构体,然后将ro赋值给rw中的ro,然后将rw赋值给class,


 supercls = realizeClassWithoutSwift(remapClass(cls->superclass));
    metacls = realizeClassWithoutSwift(remapClass(cls->ISA()));

然后递归遍历他的父类和元类,同样的方式分配。最后


 // Attach categories
    methodizeClass(cls);


static void methodizeClass(Class cls)
{
    runtimeLock.assertLocked();

    bool isMeta = cls->isMetaClass();
    auto rw = cls->data();
    auto ro = rw->ro;

    // Methodizing for the first time
    if (PrintConnecting) {
        _objc_inform("CLASS: methodizing class '%s' %s", 
                     cls->nameForLogging(), isMeta ? "(meta)" : "");
    }

    // Install methods and properties that the class implements itself.
    method_list_t *list = ro->baseMethods();
    if (list) {
        prepareMethodLists(cls, &list, 1, YES, isBundleClass(cls));
        rw->methods.attachLists(&list, 1);
    }

    property_list_t *proplist = ro->baseProperties;
    if (proplist) {
        rw->properties.attachLists(&proplist, 1);
    }

    protocol_list_t *protolist = ro->baseProtocols;
    if (protolist) {
        rw->protocols.attachLists(&protolist, 1);
    }

    // Root classes get bonus method implementations if they don't have 
    // them already. These apply before category replacements.
    if (cls->isRootMetaclass()) {
        // root metaclass
        addMethod(cls, SEL_initialize, (IMP)&objc_noop_imp, "", NO);
    }

    // Attach categories.
    category_list *cats = unattachedCategoriesForClass(cls, true /*realizing*/);
    attachCategories(cls, cats, false /*don't flush caches*/);

    if (PrintConnecting) {
        if (cats) {
            for (uint32_t i = 0; i < cats->count; i++) {
                _objc_inform("CLASS: attached category %c%s(%s)", 
                             isMeta ? '+' : '-', 
                             cls->nameForLogging(), cats->list[i].cat->name);
            }
        }
    }
    
    if (cats) free(cats);

#if DEBUG
    // Debug: sanity-check all SELs; log method list contents
    for (const auto& meth : rw->methods) {
        if (PrintConnecting) {
            _objc_inform("METHOD %c[%s %s]", isMeta ? '+' : '-', 
                         cls->nameForLogging(), sel_getName(meth.name));
        }
        assert(sel_registerName(sel_getName(meth.name)) == meth.name); 
    }
#endif
}

可以看到


 method_list_t *list = ro->baseMethods();
    if (list) {
        prepareMethodLists(cls, &list, 1, YES, isBundleClass(cls));
        rw->methods.attachLists(&list, 1);
    }

    property_list_t *proplist = ro->baseProperties;
    if (proplist) {
        rw->properties.attachLists(&proplist, 1);
    }

    protocol_list_t *protolist = ro->baseProtocols;
    if (protolist) {
        rw->protocols.attachLists(&protolist, 1);
    }

是将ro里面改的方法列表啊,属性列表还有协议列表,添加到rw里面,然后紧接着


 // Attach categories.
    category_list *cats = unattachedCategoriesForClass(cls, true /*realizing*/);
    attachCategories(cls, cats, false /*don't flush caches*/);



static void 
attachCategories(Class cls, category_list *cats, bool flush_caches)
{
    if (!cats) return;
    if (PrintReplacedMethods) printReplacements(cls, cats);

    bool isMeta = cls->isMetaClass();

    // fixme rearrange to remove these intermediate allocations
    method_list_t **mlists = (method_list_t **)
        malloc(cats->count * sizeof(*mlists));
    property_list_t **proplists = (property_list_t **)
        malloc(cats->count * sizeof(*proplists));
    protocol_list_t **protolists = (protocol_list_t **)
        malloc(cats->count * sizeof(*protolists));

    // Count backwards through cats to get newest categories first
    int mcount = 0;
    int propcount = 0;
    int protocount = 0;
    int i = cats->count;
    bool fromBundle = NO;
    while (i--) {
        auto& entry = cats->list[i];

        method_list_t *mlist = entry.cat->methodsForMeta(isMeta);
        if (mlist) {
            mlists[mcount++] = mlist;
            fromBundle |= entry.hi->isBundle();
        }

        property_list_t *proplist = 
            entry.cat->propertiesForMeta(isMeta, entry.hi);
        if (proplist) {
            proplists[propcount++] = proplist;
        }

        protocol_list_t *protolist = entry.cat->protocols;
        if (protolist) {
            protolists[protocount++] = protolist;
        }
    }

    auto rw = cls->data();

    prepareMethodLists(cls, mlists, mcount, NO, fromBundle);
    rw->methods.attachLists(mlists, mcount);
    free(mlists);
    if (flush_caches  &&  mcount > 0) flushCaches(cls);

    rw->properties.attachLists(proplists, propcount);
    free(proplists);

    rw->protocols.attachLists(protolists, protocount);
    free(protolists);
}


prepareMethodLists(cls, mlists, mcount, NO, fromBundle);
    rw->methods.attachLists(mlists, mcount);
    free(mlists);
    if (flush_caches  &&  mcount > 0) flushCaches(cls);

    rw->properties.attachLists(proplists, propcount);
    free(proplists);

    rw->protocols.attachLists(protolists, protocount);
    free(protolists);

将分类中的发昂发,属性,协议,添加到rw中

总结


struct class_ro_t {
    uint32_t flags;
    uint32_t instanceStart;
    uint32_t instanceSize;
#ifdef __LP64__
    uint32_t reserved;
#endif

    const uint8_t * ivarLayout;
    
    const char * name;
    method_list_t * baseMethodList;
    protocol_list_t * baseProtocols;
    const ivar_list_t * ivars;

    const uint8_t * weakIvarLayout;
    property_list_t *baseProperties;

最后看一眼我们的 class_ro_t ,有三个属性是不允许我们修改的

const uint8_t * ivarLayout;
    
    const char * name;
    
        const ivar_list_t * ivars;

    

当我们初始化一个类的时候

  1. 在编译的时候已经确定我们的类的原始信息,并将它存储在 class_ro_t 结构体中,并且运行时不能改变
  2. 递归初始化他的父类和元类
  3. 将ro中的方法协议属性等,添加到rw对应的数组中
  4. 将分类中的属性方法协议添加到rw中
  5. 在运行时,不能动态的想类中添加成员变量,还有弱引用成员变量,和修改类名
  6. 因为运行时,我们的rw对ro进行了引用,ro的方法列表协议列表添加到了我们的rw对用的数组中,所以就给我们在运行时对方法等做动态修改提供了可能。

很多人可能会有疑问,runtime 不是提供了 动态添加成员变量的方法 class_addIvar() ,但是苹果的官方文档已经有明确的说明

This function may only be called after objc_allocateClassPair and before objc_registerClassPair. Adding an instance variable to an existing class is not supported.

必须在alloc 和 register 之间调用,之前说过,程序编译的时候就生成了成员变量布局,程序启动后就没有机会再添加成员变量了,

因为我们的类实例是需要一块内存空间的,他有isa指针指向,如果我们在运行时允许动态修改成员变量的布局,那么创建出来的类实例就属于无效的了,能够被所以修改,但是属性和方法是我们 objc_class 可以管理的,增删改都不影响我们实例内存布局。

你可能感兴趣的:(iOS 源码分析 Class 本质,objc_class,class_rw_t,class_ro_t 分析)