- 第一个问题:AI会威胁人类吗?
释迦呼呼
AI一千问人工智能
第一个问题:AI会威胁人类吗?对于这个问题,我的回答是:AI本身并不会威胁人类,但其是否构成威胁取决于人类如何设计、使用和监管它。下面我将从几个角度详细分析。AI的本质:人类的工具AI(人工智能)是由人类创造的工具,它的行为和决策完全基于人类设计的算法和输入的数据。换句话说,AI没有自己的意识、意图或独立的目标,因此它本身并不具备威胁人类的动机或能力。它的作用是由开发者、使用者和管理者决定的。AI
- 在低功耗MCU上实现人工智能和机器学习
电子科技圈
SiliconLabs人工智能机器学习嵌入式硬件经验分享科技物联网mcu
作者:SiliconLabs人工智能(AI)和机器学习(ML)技术不仅正在快速发展,还逐渐被创新性地应用于低功耗的微控制器(MCU)中,从而实现边缘AI/ML解决方案。这些MCU是许多嵌入式系统不可或缺的一部分,凭借其成本效益、高能效以及可靠的性能,现在能够支持AI/ML应用。这种集成化在可穿戴电子产品、智能家居设备和工业自动化等应用领域中,从AI/ML功能中获得的效益尤为显著。具备AI优化功能的
- 《AI与NLP:开启元宇宙社交互动新纪元》
人工智能深度学习
在科技飞速发展的当下,元宇宙正从概念逐步走向现实,成为人们关注的焦点。而在元宇宙诸多令人瞩目的特性中,社交互动体验是其核心魅力之一。人工智能(AI)与自然语言处理(NLP)技术的迅猛发展,为元宇宙社交互动带来了前所未有的变革与提升,深刻地影响着用户在虚拟世界中的社交方式与体验。自然语言交互,打破沟通壁垒在早期的元宇宙雏形中,用户与虚拟环境、其他用户的交互多依赖于简单的指令输入或有限的动作操作,这种
- 函数调用和 Java 与 Spring AI 模型的集成
算法资料吧!
javaspring人工智能
SpringAI是一个功能强大的SpringFramework项目,它为Java开发人员带来了人工智能(AI)功能。通过将AI模型集成到Java应用程序中,SpringAI简化了创建智能应用程序的过程,同时利用了Spring生态系统的稳健性。本文将指导您完成使用SpringAI将AI模型集成到Java应用程序中的步骤,特别关注允许AI模型与外部数据源和服务动态交互的函数调用机制。SpringAIS
- DeepSeek 到底是什么类型的应用,其核心功能是什么?
AndrewHZ
python生活算法深度学习人工智能语言模型deepseek
DeepSeek是一款多用途的人工智能工具,其核心功能基于大模型技术,覆盖内容生成、数据分析、个性化服务及复杂任务处理等多个领域。以下从应用类型和核心功能两方面展开分析:一、DeepSeek的应用类型通用型人工智能助手DeepSeek被设计为跨行业的通用型AI,适用于生活、学习、工作等场景。例如:生活场景:提供旅游推荐(如黔南的景点、美食)、诗歌创作、儿童故事生成等。专业场景:在金融、保险等领域,
- 使用LlamaIndex进行Token计数的实战指南
llzwxh888
自然语言处理人工智能python
在人工智能领域,特别是在自然语言处理(NLP)任务中,理解和跟踪Token的使用情况是非常重要的。这篇文章将介绍如何使用LlamaIndex库来进行Token计数,并提供一些实用的代码示例,以便你在自己的项目中应用这些技术。环境设置首先,我们需要设置回调和服务上下文。通过全局设置,我们可以在不需要每次查询时都传递这些设置的情况下使用它们。importosos.environ["OPENAI_API
- 清华大学第5弹: 《DeepSeek与AI幻觉》 - 清华大学DeepSeek全套资料完整版 - 持续更新 - PDF免费下载
jiswordsman
人工智能pdf
由清华大学新闻与传播学院与人工智能学院双聘教授沈阳教授团队倾力打造的《DeepSeek与AI幻觉》,全面呈现,共计38页。《DeepSeek与AI幻觉》报告探讨了AI幻觉的成因、评测方法及其影响,并以DeepSeek模型为例,分析数据偏差、知识固化等问题如何导致幻觉现象。报告还提出缓解策略,如联网搜索、提示词优化,并探讨AI幻觉在科学创新和艺术创作中的潜在价值。点击链接免费下载《DeepSeek与
- 人工智能基础:从零开始讲解AI的基本概念、发展历程及其核心技术
一碗黄焖鸡三碗米饭
人工智能前沿与实践人工智能架构机器学习深度学习
人工智能基础:从零开始讲解AI的基本概念、发展历程及其核心技术人工智能(AI)正以前所未有的速度发展,渗透到各行各业,改变着我们的生活方式和工作模式。从自动驾驶到语音助手,从推荐系统到智能制造,人工智能技术无处不在。然而,许多人对于人工智能的了解仍停留在表面,甚至对其中的一些核心概念感到陌生。本文将围绕人工智能的基础概念、发展历程及核心技术进行详细讲解。我们将通过代码示例和表格对比,帮助大家深入理
- 人工智能时代,程序员如何保持核心竞争力?
大道归简
人工智能AIGC
一、AI辅助编程对程序员工作的影响AI辅助编程工具正在迅速改变程序员的日常工作实践。这些工具提供了强大的功能,如智能代码补全、自动代码生成和代码重构等,极大地提高了编程效率。例如,GitHubCopilot可以根据上下文自动生成代码片段,而Tabnine则能提供智能代码补全建议。这些工具不仅加快了编码速度,还能帮助程序员减少常见错误,提高代码质量。然而,过度依赖AI工具也可能带来一些潜在风险:编程
- 数字人源码源头搭建技术全攻略,支持OEM
余18538162800)
python
引言在人工智能与多媒体技术迅猛发展的当下,数字人已从概念构想逐步走进现实应用,广泛渗透于娱乐、教育、医疗、金融等多个领域。搭建数字人源码系统是一项综合性的技术工程,融合了计算机图形学、人工智能、语音处理等多学科前沿技术。本文将深入剖析数字人源码搭建的技术细节,为开发者提供详尽的技术开发指南。技术选型与架构设计图形渲染技术实时渲染引擎:Unity:作为一款跨平台的实时渲染引擎,Unity在数字人开发
- 数据飞轮:激活数据中台的数据驱动引擎
Earth explosion
kafka
在数字化转型的浪潮中,企业面临着如何有效利用海量数据驱动业务增长的挑战。数据中台,作为企业数据集成和分析的关键基础设施,往往未能充分发挥其潜力,成为数据的沉睡之地。数据飞轮作为一种新兴的数据驱动模型,提供了唤醒数据中台并实现数据流动的新思路。本文将探讨数据飞轮的概念、构建方法以及如何通过数据飞轮实现数据中台的活力焕发。随着人工智能和大数据技术的发展,企业拥有了收集和处理前所未有的数据量的能力。然而
- 大语言模型基础
MatrixSparse
大模型人工智能语言模型自然语言处理人工智能
简介AI大模型是“人工智能预训练大模型”的简称,包含了“预训练”和“大模型”两层含义,二者结合产生了一种新的人工智能模式,即模型在大规模数据集上完成了预训练后无需微调,或仅需要少量数据的微调,就能直接支撑各类应用。AI大模型主要分为三类:大语言模型、CV大模型和多模态大模型,我将分别介绍它们的背景知识、关键技术、演进路线和挑战。什么是大语言模型大语言模型(LargeLanguageModel,LL
- 一文介绍DeepSeek的模型蒸馏和模型量化技术
江湖人称麻花滕
人工智能架构chatgpt开源语言模型
1关于DeepSeek最近大火的DeepSeek给中国AI市场带来了很多热度,在DeepSeek的官网,也反复提及“模型蒸馏”技术。大模型的模型蒸馏和模型量化是当前人工智能领域中重要的研究方向,它们对于提高模型的部署效率、降低资源消耗具有重要意义。2模型蒸馏(ModelDistillation)2.1定义与原理模型蒸馏是一种知识迁移的方法旨在将知识从一个大型的教师模型(TeacherModel)转
- AI训练师团队管理运营思路
姚瑞南
意图识别训练流程及规范智能客服AI项目管理人工智能AIGC语言模型自然语言处理
本文原创作者:姚瑞南AI-agent大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)目录目录大纲1.团队定位2.业务概览3.团队分工4.运营全流程5.衡量目标一、团队定位二、业务概览三、业务分配四、运营流程及步骤1.运营流程2.运营步骤五、指标观测目录大纲1.团队定
- DeepSeek赋能智能交通流量预测与优化:告别拥堵的未来
人工智能专属驿站
计算机视觉人工智能
DeepSeek赋能智能交通流量预测与优化:告别拥堵的未来在城市化快速发展的今天,交通拥堵已成为全球大中城市的“通病”,严重影响人们的出行效率和生活质量。然而,随着人工智能技术的不断进步,特别是DeepSeek这样的先进模型的出现,交通流量预测与优化迎来了新的曙光。DeepSeek凭借其强大的时空预测模型和强化学习框架,为交通流量预测和信号优化提供了全新的解决方案。它能够整合多源数据,包括地磁传感
- AIGC训练效率与模型优化的深入探讨
DARLING Zero two♡
话题AIGC
文章目录1.AIGC概述2.AIGC模型训练效率的重要性3.模型优化的概念与目标4.模型优化策略4.1学习率调节4.2模型架构选择4.3数据预处理与增强4.4正则化技术4.5量化与剪枝5.代码示例6.结论人工智能领域的发展,人工智能生成内容(AIGC)越来越受关注。AIGC能够通过学习大量数据生成高质量内容,但训练效率和模型优化仍然是关键的研究方向。本博客将深入探AIGC的训练效率,与模型优化的相
- 计算机视觉与深度学习实战:以Python为工具,基于帧间差法进行视频目标检测
好知识传播者
Python实例开发实战计算机视觉深度学习python基于帧间差法进行视频目标检测
一、引言随着科技的飞速发展,计算机视觉和深度学习已成为当今科技领域的热门话题。它们不仅在科研领域取得了显著的成果,而且在安防监控、智能交通、医疗影像分析、工业自动化等领域得到了广泛的应用。本文旨在探讨计算机视觉与深度学习的实战应用,特别是以Python为工具,基于帧间差法进行视频目标检测的方法。二、计算机视觉概述计算机视觉是一门研究如何使机器从数字图像或视频中提取、分析和理解有用信息的学科。它涉及
- 【零基础保姆级教程】DeepSeek小白速成指南:从入门到实战,1小时掌握AI神器!
emmm形成中
人工智能python
【零基础保姆级教程】DeepSeek小白速成指南:从入门到实战,1小时掌握AI神器!date:2025-02-2220:00:00tags:人工智能新手教程效率工具categories:技术实战前言你是否羡慕别人用AI工具高效产出文案、代码甚至数据分析报告?是否因英语不好或技术门槛而对DeepSeek望而却步?本文将手把手教你零代码基础1小时玩转DeepSeek,覆盖注册、提问技巧、API配置到实
- 2025年普通人转向人工智能运维(AIOps)学习建议(附最新技术实践与资源)
emmm形成中
人工智能运维学习
2025年普通人转向人工智能运维(AIOps)学习建议(附最新技术实践与资源)一、学习路径规划:分阶段掌握核心技能1.基础能力构建(3-6个月)传统运维技能Linux与Shell脚本:掌握Linux系统管理、性能调优及常用命令(如awk、sed处理日志)。监控工具:学习Prometheus、Zabbix等工具,理解指标采集与告警规则配置。自动化运维:熟悉Ansible、Jenkins等工具,编写自
- 【Llama3:8b】手把手教你如何在本地部署 自己的 LLM大模型
AI大模型..
langchainllama人工智能大模型LLMai大模型大模型部署
一、为什么需要本地部署属于自己的大模型?趋势:我们正处于AI人工智能时代,各行各业的公司和产品都在向AI靠拢。打造垂直领域的AI模型将成为每个公司未来的发展趋势。数据安全:在无法掌握核心算法的情况下,许多公司选择使用大公司的成熟方案。然而,这涉及到数据安全的问题。训练垂直定制化的大模型需要大量数据,而数据是公司的核心资产和基石。没有公司愿意将这些关键数据上传到外部服务器,这是公司的命脉所在。本地部
- 【大模型应用开发 动手做AI Agent】大模型就是Agent的大脑
杭州大厂Java程序媛
DeepSeekR1&AI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能
【大模型应用开发动手做AIAgent】大模型就是Agent的大脑关键词:大模型,AIAgent,智能决策,任务导向,知识表示,交互式学习,混合智能1.背景介绍1.1问题由来随着人工智能(AI)技术的发展,尤其是深度学习和自然语言处理(NLP)技术的进步,越来越多的应用场景开始采用AI模型来解决复杂的决策问题。然而,当前的AI模型大多依赖于大模型的预训练知识,这些模型虽然在通用知识获取上取得了显著进
- 独立开发者灵感日报:简化您生活的 IT 聊天机器人
前端后花园
前端热门开源项目生活机器人百度人工智能自动化AI编程
独立开发者产品日刊,每日汇集ProductHunt热榜产品介绍,⚡️1句Slogan榨干产品灵魂,⚡️3秒get全球独立开发者的爆款灵感。关注小前,每日捕获全球产品灵感。这是日刊第28篇文章。FleetAICopilotSlogan:简化您生活的IT聊天机器人标签:人工智能·机器人·科技为什么值得推荐:FleetAICopilot是您新的AI驱动的IT助手,可简化设备管理并转换日常IT任务。它通过
- AI DMP 数据基建:如何利用数据提升营销效率
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
AIDMP数据基建:如何利用数据提升营销效率关键词:AI、DMP、数据基建、营销效率、数据驱动、用户画像、精准投放、数据安全摘要:本文深入探讨了AI驱动的DMP(数据管理平台)在现代营销中的关键作用。文章详细阐述了AIDMP数据基建的核心概念、技术原理和实施步骤,包括数据收集、整合、分析和应用等方面。通过结合人工智能技术,DMP能够更精准地构建用户画像,优化营销策略,提高广告投放效率。文章还探讨了
- 人工智能训练师如何做文本数据标注?
小宝哥Code
人工智能训练师人工智能
在人工智能训练中,文本数据标注是非常重要的一个环节。文本数据标注是对数据进行结构化、分类、分词、情感分析、命名实体识别(NER)等操作,为机器学习模型提供准确的输入。以下是常见的文本数据标注任务和对应的Python代码示例。1.文本分类标注文本分类标注是对文本数据进行分类的任务。通常我们会将文本数据标注为不同的类别,比如“体育”、“娱乐”、“政治”等。示例:假设我们有一组新闻文本,我们需要为其分配
- 基于ChatGPT-4o信息检索、总结分析、论文写作与投稿、专利idea构思与交底书的撰写
AAIshangyanxiu
chatgptpython机器学习深度学习
第一章2024大语言模型最新进展与ChatGPT各模型讲解1、2024AIGC技术最新进展介绍(生成式人工智能的基本概念与原理、最新前沿技术和发展趋势简介)2、国内外大语言模型(ChatGPT4O、Gemini、Claude、Llama3、PerplexityAI、文心一言、星火、通义千问、Kimi、智谱清言、秘塔AI等)对比分析3、OpenAI12天12场直播新功能解读与演示(ChatGPTO1
- 适用于复杂背景的YOLOv8改进:基于DCN的特征提取能力提升研究
向哆哆
YOLO目标跟踪机器学习yolov8
文章目录1.YOLOv8的性能瓶颈与改进需求1.1YOLOv8的优势与局限性1.2可变形卷积(DCN)的优势2.DCN在YOLOv8中的应用2.1DCN的演变与YOLOv8的结合2.2将DCN嵌入YOLOv8的结构中2.2.1DCNv1在YOLOv8中的应用2.2.2DCNv2与DCNv3的优化2.3实验与性能对比3.结果与分析3.1数据集与实验设置实验设置:3.2实验结果3.2.1COCO数据集
- 【有啥问啥】DeepSeek NSA(Native Sparse Attention):开启高效推理与降本增效的新篇章
有啥问啥
大模型人工智能算法
DeepSeekNSA(NativeSparseAttention):开启高效推理与降本增效的新篇章在人工智能领域,尤其是自然语言处理(NLP)和大语言模型(LLM)的浪潮中,性能与效率一直是研究者和开发者关注的焦点。随着模型规模的不断扩大,计算资源的需求呈指数级增长,这不仅带来了高昂的硬件成本,也对推理速度和实时性提出了严峻挑战。而DeepSeek团队提出的NSA(NativeSparseAtt
- DeepSeek:为医疗数智化注入新动能
数澜悠客
数字化转型人工智能deepseek
DeepSeek掀起企业数智化浪潮在数字化与智能化深度融合的时代背景下,企业数智化转型已从一种趋势演变为关乎生存与发展的必然选择。随着云计算、大数据、人工智能等前沿技术的迅猛发展,数智化转型成为企业提升竞争力、创新业务模式、优化客户体验的关键路径。在这场波澜壮阔的转型浪潮中,DeepSeek以其卓越的技术实力和创新能力,成为众多企业实现数智化飞跃的强大助推器。DeepSeek作为人工智能领域的佼佼
- 计算机毕业设计吊炸天Python+Spark地铁客流数据分析与预测系统 地铁大数据 地铁流量预测
qq_80213251
javajavaweb大数据课程设计python
开发技术SparkHadoopPython爬虫Vue.jsSpringBoot机器学习/深度学习人工智能创新点Spark大屏可视化爬虫预测算法功能1、登录注册界面,用户登录注册,修改信息2、管理员用户:(1)查看用户信息;(2)出行高峰期的10个时间段;(3)地铁限流的10个时间段;(4)地铁限流的前10个站点;(6)可视化大屏实时显示人流量信息。3、普通用户:(1)出行高峰期的10(5)可视化大
- YOLOv11快速上手:如何在本地使用TorchServe部署目标检测模型
SYC_MORE
YOLOv11系列教程:模型训练优化与部署全攻略TorchServeYOLOv11教程模型部署与推理TorchServe应用目标检测模型训练YOLO模型导出
引言YOLOv11是最新的目标检测模型,以其高效和准确著称,广泛应用于图像分割、姿态估计等任务。本文将详细介绍如何使用YOLOv11训练你的第一个目标检测模型,并通过TorchServe在本地进行部署,实现模型的快速推理。环境准备在开始之前,确保你的开发环境满足以下要求:Python版本:3.8或以上PyTorch:1.9或以上CUDA:如果使用GPU,加速训练和推理TorchServe:用于模型
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓