- 大规异构集群 混合并行分布式训练系统,解决算力不均衡问题 HETHUB
爱串门的小马驹
万卡大规模集群大模型训练异构集群大规模集群分布式大模型训练
视频教程在这:3.2大规模异构集群,混合并行分布式系统,解释算力不均衡问题HETHUB_哔哩哔哩_bilibili一、大规模异构集群出现的原因:同一种GPU数量有限难以构建大规模集群:训练大规模模型依赖于大量的计算资源。例如,训练GPT-4模型(1.8万亿个参数)需要25000个A100GPU。用一种GPU加速器构建大规模集群是一个挑战。使用多种类型的GPU加速器构建大规模集群是解决同构GPU加速
- LLM 大模型技术知识最佳学习路径图发布!
AGI-杠哥
学习人工智能语言模型agi自然语言处理
近日,经常有小伙伴私信我,大模型知识太多了,有点懵啊,我该如何学习LLM大模型?今天我们就来剖析下LLM大模型技术知识的学习路径。如果你是一个LLM大模型的“技术小白”,我们建议的学习路径如下:技术交流群前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~我们建了大模型技术与面试交流群
- [从零开始学习JAVA] Stream流
Cools0613
从0开始学Java学习
前言:本文我们将学习Stream流,他就像流水线一样,可以对我们要处理的对象进行逐步处理,最终达到我们想要的效果,是JAVA中的一大好帮手,值得我们了解和掌握。(通常和lambda匿名内部类方法引用相配合)Stram流:Stream流的核心思想是函数式编程(注意返回值必须是对象本身才能),它倡导将数据处理过程看作是一系列的转换操作。这种思想与传统的命令式编程方式不同,传统的命令式编程方式强调对数据
- MiniMind:完全从 0 训练自己的大模型
三花AI
三花AI人工智能LLM大模型
是B站UP主近在远方的远开源的一个微型语言模型,改进自DeepSeek-V2、Llama3结构,项目包含整个数据处理、pretrain、sft、dpo的全部阶段,包含混合专家(MoE)模型。其目标是把上手LLM的门槛无限降低,直接从0开始训练一个极其轻量的语言模型,最低仅需2G显卡即可推理训练!
- 直方图梯度提升:大数据时代的极速决策引擎
万事可爱^
大数据机器学习深度学习直方图梯度提升GBDT算法
一、为什么需要直方图梯度提升?在Kaggle竞赛的冠军解决方案中,超过70%的获奖方案都使用了梯度提升算法。但当数据量突破百万级时,传统梯度提升树(GBDT)面临三大致命瓶颈:训练耗时剧增:每个特征的分割点计算都需要全量数据排序内存消耗爆炸:存储排序后的特征值需要额外空间处理效率低下:无法有效利用现代CPU的多核特性而梯度提升决策树(GBDT)作为集成学习的代表算法,通过迭代构建决策树实现预测能力
- 【集成学习】:Stacking原理以及Python代码实现
Geeksongs
机器学习python机器学习深度学习人工智能算法
Stacking集成学习在各类机器学习竞赛当中得到了广泛的应用,尤其是在结构化的机器学习竞赛当中表现非常好。今天我们就来介绍下stacking这个在机器学习模型融合当中的大杀器的原理。并在博文的后面附有相关代码实现。总体来说,stacking集成算法主要是一种基于“标签”的学习,有以下的特点:用法:模型利用交叉验证,对训练集进行预测,从而实现二次学习优点:可以结合不同的模型缺点:增加了时间开销,容
- 模型部署后的版本回滚策略,如何确保服务降级的平滑性?
百态老人
neo4j
模型部署版本回滚策略与平滑服务降级技术体系(2025版)一、核心设计原则与架构模型部署回滚的平滑性需建立在版本隔离性、流量可控性、数据兼容性三大支柱上,结合2025年前沿技术实现多维保障:
- 【人工智能】大模型的幻觉问题:DeepSeek 的解决策略与实践
蒙娜丽宁
Python杂谈人工智能人工智能
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界大语言模型(LLM)的“幻觉”问题,即模型生成与事实不符或脱离上下文的内容,是限制其广泛应用的关键挑战之一。本文深入探讨了幻觉问题的成因,包括训练数据的偏差、推理过程中的过度泛化以及缺乏外部验证机制。以DeepSeek系列模型为研究对象,我们分析了其在解
- 黑客攻击deepseek服务原理解析
大囚长
大模型机器学习黑客帝国人工智能
黑客可通过操纵大模型的连续对话上下文回顾机制,构造恶意请求以触发模型进入无限思考循环或超长上下文处理,从而形成对对话服务的DoS攻击(拒绝服务攻击)。这一攻击方式的核心在于利用大模型对上下文处理机制的脆弱性,通过极低的攻击成本实现资源耗尽。一、攻击原理与实现路径无限推理循环攻击通过输入特定构造的提示词(如“树中两条路径之间的距离”),诱导模型陷入无限思考链(Chain-of-Thought,CoT
- 【软件架构系列:一文读懂数据流体系结构风格】
youngerwang
学习笔记软件系统架构系统架构架构风格数据流体系结构风格
文章目录一文读懂数据流体系结构风格一、数据流体系结构风格是什么?二、数据流体系结构风格的类型(一)批处理风格(二)连续数据流风格三、数据流体系结构风格的特点(一)数据驱动一切(二)模块化与可复用性强(三)易于并行处理四、数据流体系结构风格的优势(一)维护轻松(二)扩展容易(三)性能优化空间大五、数据流体系结构风格的局限性(一)复杂控制逻辑实现困难(二)数据一致性挑战(三)资源消耗问题六、数据流体系
- 【广告架构day1】爱奇艺广告系统的演进之路:实践中的一些经验
软件真理与光
业务技术架构后端
本文来自爱奇艺的分享孙立伟。近年来爱奇艺快速发展,优质内容层出不穷,爱奇艺广告也随之发展和壮大,广告在线服务同时服务于品牌、中小、DSP等不同客户,形成了可以满足不同需求类型的较为完善的商业广告变现布局,广告库存涵盖视频、信息流、泡泡社交(爱奇艺的社交平台)和开机屏等多种场景。爱奇艺效果广告是2015年开始全新搭建的一个广告投放平台,随着信息流业务的增长,整个投放平台也经历了一次大的架构调整和多次
- 用 pytorch 从零开始创建大语言模型(零):汇总
墨绿色的摆渡人
用pytorch从零开始创建大语言模型pytorch语言模型人工智能
用pytorch从零开始创建大语言模型(零):汇总本系列官方代码库:https://github.com/rasbt/LLMs-from-scratch/tree/main官方书籍:BuildaLargeLanguageModel(FromScratch)本系列文章:用pytorch从零开始创建大语言模型(一):理解大型语言模型用pytorch从零开始创建大语言模型(二):待更新用pytorch从
- Java高并发容器的内核解析:从无锁算法到分段锁的架构演进
猿享天开
开发语言java
《Java高并发容器的内核解析:从无锁算法到分段锁的架构演进》本文将以JUC包核心容器为切入点,深入剖析ConcurrentHashMap在Java8中的64位Hash分段技术,解密LinkedBlockingQueue双锁队列设计的吞吐量秘密,并给出各容器在亿级流量场景下的性能压测对比与选型决策矩阵。一、BlockingQueue体系:生产者-消费者模式的工业级实现1.阻塞队列的四大行为矩阵行为
- AI时代个人财富增长实战指南:从零基础到精通变现的完整路径
A达峰绮
人工智能
(本文基于人工智能技术发展规律,结合互联网经济底层逻辑,为普通从业者构建系统性AI应用框架)一、建立AI认知基础:技术理解与工具掌握技术分类认知人工智能工具分为四大功能模块:自然语言处理(文本生成、对话交互)、计算机视觉(图像视频处理)、数据分析(预测建模)、自动化控制(流程优化)。建议新手首先掌握语言类工具的基础操作,逐步扩展到其他领域。工具操作逻辑通用AI工具通常包含三大核心功能模块:输入界面
- 【大模型书籍PDF】从零开始大模型开发与微调:基于PyTorch与ChatGLM (推荐)_从零开始大模型开发与微调 pdf
喝不喝奶茶丫
pytorch人工智能语言模型大模型转行大模型AI大模型微调
今天又来给大家推荐一本大模型方面的书籍。本书使用PyTorch2.0作为学习大模型的基本框架,以ChatGLM为例详细讲解大模型的基本理论、算法、程序实现、应用实战以及微调技术,为读者揭示大模型开发技术。本书配套示例源代码、PPT课件。(书籍分享)
- 大语言模型学习路线:从入门到实战
大模型官方资料
语言模型学习人工智能产品经理自然语言处理搜索引擎
大语言模型学习路线:从入门到实战在人工智能领域,大语言模型(LargeLanguageModels,LLMs)正迅速成为一个热点话题。本学习路线旨在为有基本Python编程和深度学习基础的学习者提供一个清晰、系统的大模型学习指南,帮助你在这一领域快速成长。本学习路线更新至2024年02月,后期部分内容或工具可能需要更新。适应人群已掌握Python基础具备基本的深度学习知识学习步骤本路线将通过四个核
- Java基础面试题学习
PowerCloud
java学习开发语言
转换成自已的语言来回答,来源小林coding、沉默王二以及其它资源和自已改编。1、概念1、说一下Java的特点我认为Java有很多特点首先是平台无关性:Java可以实现一次编译到处运行,因为Java的编译器将源代码编译成字节码,使得该字节码可以在任意装有JVM的操作系统上运行。其次是面向对象的性质:Java是面向对象编程语言,这种OOP的特性使得代码易于维护和重用。主要源于封装继承多态这三大特性。
- 软考系统架构设计师考试学习和考试的知识点大纲,覆盖所有考试考点
DKPT
#系统架构设计师系统架构学习
以下是软考系统架构设计师考试的知识点大纲,覆盖所有官方考点,分为基础知识、核心技术、系统设计、案例分析、论文写作五大模块,帮助系统性学习和备考:一、基础知识模块计算机组成与体系结构计算机硬件组成(CPU、内存、I/O设备)存储系统(Cache、RAID、虚拟内存)指令系统与流水线技术操作系统进程与线程管理(调度算法、死锁)内存管理(分页、分段、虚拟内存)文件系统与磁盘管理数据库系统关系数据库(SQ
- 设计模式-抽象工厂模式(Abstract Factory Pattern)结构|原理|优缺点|场景|示例
TsengOnce
设计模式抽象工厂模式java
设计模式(分类)设计模式(六大原则)创建型(5种)工厂方法抽象工厂模式单例模式建造者模式原型模式结构型(7种)适配器模式装饰器模式代理模式外观模式桥接模式组合模式享元模式行为型(11种)策略模式模板方法模式观察者模式迭代器模式责任链模式命令模式备忘录模式状态模式访问者模式中介者模式抽象工厂模式(AbstractFactoryPattern)是一种创建型设计模式,它提供了一个创建一系列相关或相互依赖
- CSS动画:性能优化指南
双囍菜菜
前端随记css性能优化前端
CSS动画性能优化指南关键词:重排重绘、硬件加速、合成层、性能分析文章目录CSS动画性能优化指南一、浏览器渲染机制:理解性能瓶颈根源1.1像素管道(PixelPipeline)全流程1.2各阶段性能损耗对比二、性能分析实战:ChromeDevTools深度使用2.1性能问题定位四步法2.2关键指标解读三、六大核心优化策略3.1硬件加速的正确打开方式3.2避免布局颠簸(LayoutThrashing
- 24远景能源-动力,10月最后一周面试!【NTAKYsW】
2301_79125642
java
大模型公司收实习啦,入局好机会,全是大佬不卷后端研发实习生简历投递请联系我,牛客会屏蔽邮箱日常实习:面向全体在校生,为符合岗位要求的同学提供为期3个月及以上的项目实践机会。公司介绍下午移动笔试,晚上联通笔试我看到好多投移动都去面试了,但是我没有面试也没有任何消息,而且智联校园上面hr也没有查看,这是怎么回事,难道是随便发的笔试吗...应该投的是什么AI研究中心联通许愿美团商分octl:一面-10.
- AR眼镜——软件技术栈的必经之路
Julian.zhou
人机交互未来思考人工智能ar人工智能交互空间计算语言模型
AR眼镜软件技术栈的必经之路:从操作系统到生态构建的深度解析摘要AR眼镜作为下一代人机交互入口,其软件技术栈的成熟度直接决定了用户体验与市场渗透率。本文基于行业最新技术动态与头部企业布局,深度剖析AR眼镜软件行业必须突破的七大技术方向,揭示从底层框架到应用生态的全栈技术储备路径。一、操作系统与底层框架:实时性与轻量化的双重革命AR眼镜软件生态的根基在于操作系统的定制化与优化,需满足三大核心需求:实
- Caffeine vs Guava Cache:性能巅峰对决,谁才是 Java 本地缓存之王?
Julian.zhou
Java开发基础技能缓存java算法
CaffeinevsGuavaCache:性能巅峰对决,谁才是Java本地缓存之王?导语:在Java本地缓存的战场上,Caffeine和GuavaCache是开发者最常用的两大神器。但究竟谁的性能更胜一筹?为何Caffeine被称为“GuavaCache的终结者”?本文通过算法原理、并发性能、内存管理、实战测试四大维度,彻底揭秘两者的性能差异,文末附迁移指南和选型建议!一、核心差异:算法与淘汰策略
- 【颠覆性缓存架构】Caffeine双引擎缓存实战:CPU和内存双优化,命中率提升到92%,内存减少75%
Julian.zhou
架构相关Java开发基础技能算法缓存架构java
千万级QPS验证!Caffeine智能双缓存实现92%命中率,内存减少75%摘要:本文揭秘千万级流量场景下的缓存革命性方案!基于Caffeine打造智能双模式缓存系统,通过冷热数据分离存储与精准资源分配策略,实现CPU利用率降低60%、内存占用减少75%的惊人效果。文末附可复用的生产级代码!一、经典方案的致命陷阱:资源浪费之谜1.1真实事故现场案例回放:某电商大促期间,缓存集群CPU飙升至90%导
- 量子位招聘 | DeepSeek帮我们改的招聘启事
量子位
关注前沿科技量子位未来同事,你好~这是一则招聘帖。如果你与我们志同道合,对AI大模型、具身智能、终端硬件、AI新媒体编辑感兴趣,我们正在招聘这些领域的原创作者。以下岗位均为全职,工作地点:北京中关村。岗位面向:社招、应届毕业生,所有岗位均可实习——表现出色均可转正加分项:乐于探索AI新工具,善用AI新工具;拥有解读论文的能力,能深入浅出讲解原理;有写代码能力;量子位长期读者。加入我们,你可以获得:
- 钉钉发布“AI创新N次方计划”,为AI生态免除佣金、保证金和算力费用
量子位
3月20日,钉钉在北京举办了“AI创业N次方”生态创新大会。会上,钉钉发布了一系列全新生态政策,为AI创业者、AI转型者提供助力:包括免除佣金、免除入驻保证金和免除算力费用,并在销售、品牌、技术和投资等方面提供支持,为生态伙伴提供AI应用创业创新的全方位助力。发布AI创新扶持计划:“三免四助力”钉钉副总裁、开放平台总经理王铭在会上表示:“开放是钉钉一直以来的信仰。AI时代大幕拉开,钉钉生态也进入新
- 光影香江聚四海,蓝陵科技扬帆数字内容新蓝海
LhcyyVSO
人工智能大数据
3月20日,第29届香港国际影视展(FILMART)圆满收官,这场亚洲顶级行业盛会吸引了34个国家和地区逾760家机构参展,搭建起全球影视产业深度对话的桥梁。蓝陵科技携三大创新数字解决方案惊艳亮相,与各国行业领袖共探影视工业化转型路径,开启文化科技出海新篇章。数字基建赋能构建全球合作生态在1B-D17展区,蓝陵科技通过影视动漫渲染、vLive虚拟直播、AI跨境电商直播数字人三大技术矩阵,向国际客商
- 普通大众航拍、娱乐、户外、创作等情况对无人机的筛选推荐
yychen_java
无人机
一、价格区间与机型推荐1.入门级(1000元以下)推荐机型:HolyStoneHS170、HubsanX4特点:价格低廉:适合预算有限或初次体验用户续航短:约5-10分钟功能简化:无专业摄像头,主打基础飞行乐趣适合场景:儿童娱乐、新手练习操控2.中端级(1000-3000元)推荐机型:大疆DJIMini2SE、RyzeTello特点:性价比高:支持1080P~4K拍摄,重量轻(<249g,部分国家
- 法律行业——合同审查与AI律师
zhouyaowei1983
人工智能人工智能
一、引言:AI技术重构法律行业新格局随着AI技术从实验室走向规模化应用,法律行业正经历从“经验驱动”向“数据驱动”的范式转变。这一变革的核心驱动力源于法律服务的两大根本矛盾:传统人工服务效率瓶颈与市场对高精度、低成本法律产品的迫切需求。1.法律行业数字化转型的底层逻辑技术革命推手:以DeepSeekR1大模型为代表的开源AI技术,让法律文本解析、案例推理等复杂任务实现平民化应用
- 如何加快制造业数字化转型
九河智造云
制造云计算
加速制造业数字化转型的五大战略支点制造业数字化转型已进入深水区。工信部数据显示,2025年我国规模以上工业企业数字化研发工具普及率达88%,但全流程数字化覆盖率不足35%。破解转型困局需要构建“政策引导-技术突破-场景落地-生态协同”的加速机制,通过五大核心战略实现质效突破。一、强化顶层设计:构建转型制度保障体系政策创新需突破三大瓶颈:专项资金引导:设立2000亿元制造业数字化专项基金,对智能工厂
- redis学习笔记——不仅仅是存取数据
Everyday都不同
returnSourceexpire/delincr/lpush数据库分区redis
最近项目中用到比较多redis,感觉之前对它一直局限于get/set数据的层面。其实作为一个强大的NoSql数据库产品,如果好好利用它,会带来很多意想不到的效果。(因为我搞java,所以就从jedis的角度来补充一点东西吧。PS:不一定全,只是个人理解,不喜勿喷)
1、关于JedisPool.returnSource(Jedis jeids)
这个方法是从red
- SQL性能优化-持续更新中。。。。。。
atongyeye
oraclesql
1 通过ROWID访问表--索引
你可以采用基于ROWID的访问方式情况,提高访问表的效率, , ROWID包含了表中记录的物理位置信息..ORACLE采用索引(INDEX)实现了数据和存放数据的物理位置(ROWID)之间的联系. 通常索引提供了快速访问ROWID的方法,因此那些基于索引列的查询就可以得到性能上的提高.
2 共享SQL语句--相同的sql放入缓存
3 选择最有效率的表
- [JAVA语言]JAVA虚拟机对底层硬件的操控还不完善
comsci
JAVA虚拟机
如果我们用汇编语言编写一个直接读写CPU寄存器的代码段,然后利用这个代码段去控制被操作系统屏蔽的硬件资源,这对于JVM虚拟机显然是不合法的,对操作系统来讲,这样也是不合法的,但是如果是一个工程项目的确需要这样做,合同已经签了,我们又不能够这样做,怎么办呢? 那么一个精通汇编语言的那种X客,是否在这个时候就会发生某种至关重要的作用呢?
&n
- lvs- real
男人50
LVS
#!/bin/bash
#
# Script to start LVS DR real server.
# description: LVS DR real server
#
#. /etc/rc.d/init.d/functions
VIP=10.10.6.252
host='/bin/hostname'
case "$1" in
sta
- 生成公钥和私钥
oloz
DSA安全加密
package com.msserver.core.util;
import java.security.KeyPair;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.SecureRandom;
public class SecurityUtil {
- UIView 中加入的cocos2d,背景透明
374016526
cocos2dglClearColor
要点是首先pixelFormat:kEAGLColorFormatRGBA8,必须有alpha层才能透明。然后view设置为透明glView.opaque = NO;[director setOpenGLView:glView];[self.viewController.view setBackgroundColor:[UIColor clearColor]];[self.viewControll
- mysql常用命令
香水浓
mysql
连接数据库
mysql -u troy -ptroy
备份表
mysqldump -u troy -ptroy mm_database mm_user_tbl > user.sql
恢复表(与恢复数据库命令相同)
mysql -u troy -ptroy mm_database < user.sql
备份数据库
mysqldump -u troy -ptroy
- 我的架构经验系列文章 - 后端架构 - 系统层面
agevs
JavaScriptjquerycsshtml5
系统层面:
高可用性
所谓高可用性也就是通过避免单独故障加上快速故障转移实现一旦某台物理服务器出现故障能实现故障快速恢复。一般来说,可以采用两种方式,如果可以做业务可以做负载均衡则通过负载均衡实现集群,然后针对每一台服务器进行监控,一旦发生故障则从集群中移除;如果业务只能有单点入口那么可以通过实现Standby机加上虚拟IP机制,实现Active机在出现故障之后虚拟IP转移到Standby的快速
- 利用ant进行远程tomcat部署
aijuans
tomcat
在javaEE项目中,需要将工程部署到远程服务器上,如果部署的频率比较高,手动部署的方式就比较麻烦,可以利用Ant工具实现快捷的部署。这篇博文详细介绍了ant配置的步骤(http://www.cnblogs.com/GloriousOnion/archive/2012/12/18/2822817.html),但是在tomcat7以上不适用,需要修改配置,具体如下:
1.配置tomcat的用户角色
- 获取复利总收入
baalwolf
获取
public static void main(String args[]){
int money=200;
int year=1;
double rate=0.1;
&
- eclipse.ini解释
BigBird2012
eclipse
大多数java开发者使用的都是eclipse,今天感兴趣去eclipse官网搜了一下eclipse.ini的配置,供大家参考,我会把关键的部分给大家用中文解释一下。还是推荐有问题不会直接搜谷歌,看官方文档,这样我们会知道问题的真面目是什么,对问题也有一个全面清晰的认识。
Overview
1、Eclipse.ini的作用
Eclipse startup is controlled by th
- AngularJS实现分页功能
bijian1013
JavaScriptAngularJS分页
对于大多数web应用来说显示项目列表是一种很常见的任务。通常情况下,我们的数据会比较多,无法很好地显示在单个页面中。在这种情况下,我们需要把数据以页的方式来展示,同时带有转到上一页和下一页的功能。既然在整个应用中这是一种很常见的需求,那么把这一功能抽象成一个通用的、可复用的分页(Paginator)服务是很有意义的。
&nbs
- [Maven学习笔记三]Maven archetype
bit1129
ArcheType
archetype的英文意思是原型,Maven archetype表示创建Maven模块的模版,比如创建web项目,创建Spring项目等等.
mvn archetype提供了一种命令行交互式创建Maven项目或者模块的方式,
mvn archetype
1.在LearnMaven-ch03目录下,执行命令mvn archetype:gener
- 【Java命令三】jps
bit1129
Java命令
jps很简单,用于显示当前运行的Java进程,也可以连接到远程服务器去查看
[hadoop@hadoop bin]$ jps -help
usage: jps [-help]
jps [-q] [-mlvV] [<hostid>]
Definitions:
<hostid>: <hostname>[:
- ZABBIX2.2 2.4 等各版本之间的兼容性
ronin47
zabbix更新很快,从2009年到现在已经更新多个版本,为了使用更多zabbix的新特性,随之而来的便是升级版本,zabbix版本兼容性是必须优先考虑的一点 客户端AGENT兼容
zabbix1.x到zabbix2.x的所有agent都兼容zabbix server2.4:如果你升级zabbix server,客户端是可以不做任何改变,除非你想使用agent的一些新特性。 Zabbix代理(p
- unity 3d还是cocos2dx哪个适合游戏?
brotherlamp
unity自学unity教程unity视频unity资料unity
unity 3d还是cocos2dx哪个适合游戏?
问:unity 3d还是cocos2dx哪个适合游戏?
答:首先目前来看unity视频教程因为是3d引擎,目前对2d支持并不完善,unity 3d 目前做2d普遍两种思路,一种是正交相机,3d画面2d视角,另一种是通过一些插件,动态创建mesh来绘制图形单元目前用的较多的是2d toolkit,ex2d,smooth moves,sm2,
- 百度笔试题:一个已经排序好的很大的数组,现在给它划分成m段,每段长度不定,段长最长为k,然后段内打乱顺序,请设计一个算法对其进行重新排序
bylijinnan
java算法面试百度招聘
import java.util.Arrays;
/**
* 最早是在陈利人老师的微博看到这道题:
* #面试题#An array with n elements which is K most sorted,就是每个element的初始位置和它最终的排序后的位置的距离不超过常数K
* 设计一个排序算法。It should be faster than O(n*lgn)。
- 获取checkbox复选框的值
chiangfai
checkbox
<title>CheckBox</title>
<script type = "text/javascript">
doGetVal: function doGetVal()
{
//var fruitName = document.getElementById("apple").value;//根据
- MySQLdb用户指南
chenchao051
mysqldb
原网页被墙,放这里备用。 MySQLdb User's Guide
Contents
Introduction
Installation
_mysql
MySQL C API translation
MySQL C API function mapping
Some _mysql examples
MySQLdb
- HIVE 窗口及分析函数
daizj
hive窗口函数分析函数
窗口函数应用场景:
(1)用于分区排序
(2)动态Group By
(3)Top N
(4)累计计算
(5)层次查询
一、分析函数
用于等级、百分点、n分片等。
函数 说明
RANK() &nbs
- PHP ZipArchive 实现压缩解压Zip文件
dcj3sjt126com
PHPzip
PHP ZipArchive 是PHP自带的扩展类,可以轻松实现ZIP文件的压缩和解压,使用前首先要确保PHP ZIP 扩展已经开启,具体开启方法就不说了,不同的平台开启PHP扩增的方法网上都有,如有疑问欢迎交流。这里整理一下常用的示例供参考。
一、解压缩zip文件 01 02 03 04 05 06 07 08 09 10 11
- 精彩英语贺词
dcj3sjt126com
英语
I'm always here
我会一直在这里支持你
&nb
- 基于Java注解的Spring的IoC功能
e200702084
javaspringbeanIOCOffice
- java模拟post请求
geeksun
java
一般API接收客户端(比如网页、APP或其他应用服务)的请求,但在测试时需要模拟来自外界的请求,经探索,使用HttpComponentshttpClient可模拟Post提交请求。 此处用HttpComponents的httpclient来完成使命。
import org.apache.http.HttpEntity ;
import org.apache.http.HttpRespon
- Swift语法之 ---- ?和!区别
hongtoushizi
?swift!
转载自: http://blog.sina.com.cn/s/blog_71715bf80102ux3v.html
Swift语言使用var定义变量,但和别的语言不同,Swift里不会自动给变量赋初始值,也就是说变量不会有默认值,所以要求使用变量之前必须要对其初始化。如果在使用变量之前不进行初始化就会报错:
var stringValue : String
//
- centos7安装jdk1.7
jisonami
jdkcentos
安装JDK1.7
步骤1、解压tar包在当前目录
[root@localhost usr]#tar -xzvf jdk-7u75-linux-x64.tar.gz
步骤2:配置环境变量
在etc/profile文件下添加
export JAVA_HOME=/usr/java/jdk1.7.0_75
export CLASSPATH=/usr/java/jdk1.7.0_75/lib
- 数据源架构模式之数据映射器
home198979
PHP架构数据映射器datamapper
前面分别介绍了数据源架构模式之表数据入口、数据源架构模式之行和数据入口数据源架构模式之活动记录,相较于这三种数据源架构模式,数据映射器显得更加“高大上”。
一、概念
数据映射器(Data Mapper):在保持对象和数据库(以及映射器本身)彼此独立的情况下,在二者之间移动数据的一个映射器层。概念永远都是抽象的,简单的说,数据映射器就是一个负责将数据映射到对象的类数据。
&nb
- 在Python中使用MYSQL
pda158
mysqlpython
缘由 近期在折腾一个小东西须要抓取网上的页面。然后进行解析。将结果放到
数据库中。 了解到
Python在这方面有优势,便选用之。 由于我有台
server上面安装有
mysql,自然使用之。在进行数据库的这个操作过程中遇到了不少问题,这里
记录一下,大家共勉。
python中mysql的调用
百度之后能够通过MySQLdb进行数据库操作。
- 单例模式
hxl1988_0311
java单例设计模式单件
package com.sosop.designpattern.singleton;
/*
* 单件模式:保证一个类必须只有一个实例,并提供全局的访问点
*
* 所以单例模式必须有私有的构造器,没有私有构造器根本不用谈单件
*
* 必须考虑到并发情况下创建了多个实例对象
* */
/**
* 虽然有锁,但是只在第一次创建对象的时候加锁,并发时不会存在效率
- 27种迹象显示你应该辞掉程序员的工作
vipshichg
工作
1、你仍然在等待老板在2010年答应的要提拔你的暗示。 2、你的上级近10年没有开发过任何代码。 3、老板假装懂你说的这些技术,但实际上他完全不知道你在说什么。 4、你干完的项目6个月后才部署到现场服务器上。 5、时不时的,老板在检查你刚刚完成的工作时,要求按新想法重新开发。 6、而最终这个软件只有12个用户。 7、时间全浪费在办公室政治中,而不是用在开发好的软件上。 8、部署前5分钟才开始测试。