- 图像识别技术与应用第三课
哈哈~156
scikit-learn
一、感知机感知机由美国学者FrankRosenblatt在1957年提出,它根据输入x、权重w和偏差b进行输出,输出结果是二分类(0或1),这和输出实数的回归以及输出概率用于多分类的Softmax不同。像与门、与非门、或门都能通过设定合适的权重和偏差实现。w称为权重:控制输入信号的重要性的参数b称为偏置:偏置是调整神经元被激活的容易程度参数感知机的局限性:感知机的局限性就是只能表示由一条直线分割的
- 2.19 图像技术识别与应用
不要不开心了
java-rabbitmqsentinelhttpxnumpydash
本节课介绍了多层感知机(MLP)及其在图像识别技术中的应用。以下是主要内容总结:1.感知机:-由FrankRosenblatt于1957年提出。-输入为x,权重为w,偏置为b,输出为二分类(0或1)。-可用于实现简单逻辑电路(如与门、与非门、或门)。-局限性:只能表示由一条直线分割的空间,无法处理线性不可分问题(如异或门)。2.多层感知机(MLP):-通过引入隐藏层和激活函数来解决感知机的局限性。
- 提高百度权重有什么用?百度真的也有PR值
shin168688
1
广州网站优化Highallxy给大家讲述提高百度权重有什么用,百度到底有没有PR值吗?虚假的网站权重?怎么说起呢?其实网站权重可以说是一个实际存在但是根本没有量化的一个数据指标。因为很容易做出虚假权重,另外做一个假的网站权重对网站至少在交换链接方面的话可以起到一定的帮助。如果要说网站权重,就要先从Google上面说起。Google的PageRank,以前是每三个月更新一次,不过这个PageRank
- Dify rerank model is deprecated in knowledge base
人工智能
这是可优化的细节。这里过时的提示倾向于说工作空间有一个默认的重新排名模型,但在执行一些前端逻辑后我们发现当前的重新排名模型是空的或未定义的,因此这个当前模型已过时。但这里默认模型实际上是一个所有字段都是空字符串的模型结构:{"provider":"","model":""}在这种情况下,缺省模型实际上是空的且无效。因此,在这里我们不会显示过时标志,而是更有可能告诉用户为工作区配置至少一个重排序模型
- 深入理解TensorFlow中的形状处理函数
SEVEN-YEARS
tensorflow人工智能python
摘要在深度学习模型的构建过程中,张量(Tensor)的形状管理是一项至关重要的任务。特别是在使用TensorFlow等框架时,确保张量的形状符合预期是保证模型正确运行的基础。本文将详细介绍几个常用的形状处理函数,包括get_shape_list、reshape_to_matrix、reshape_from_matrix和assert_rank,并通过具体的代码示例来展示它们的使用方法。1.引言在深
- linux4.0内核编译步骤,Ubuntu20.04linux内核(5.4.0版本)编译准备与实现过程-编译过程(2) -Go语言中文社区...
Up酱彡
linux4.0内核编译步骤
前面因为博客园维修,所以内核编译过程一直没有发出来,现在把整个内核过程分享出来。本随笔给出内核的编译实现过程,在编译前需要参照我前面一篇随笔:Ubuntu20.04linux内核(5.4.0版本)编译准备与实现过程-编译前准备(1):https://www.cnblogs.com/iFrank/p/14556664.html切记:注意一点需要参照前一篇随笔,不然编译过程十有八九出问题。开发环境Ub
- PyTorch Lightning多GPU分布式日志介绍
qq_27390023
pytorch人工智能python
分布式日志是指在分布式系统中,多个节点(如多台机器或多个GPU)协同工作时,对系统运行状态、错误信息、性能指标等进行记录的过程。在多GPU/分布式训练环境下,多个进程会同时运行,普通的print()或logging可能会在所有GPU上重复输出,导致日志混乱。PyTorchLightning提供了一些分布式日志控制工具,确保日志仅在rank0进程打印,防止重复输出。lightning_utiliti
- python菜鸟知识
Defry
python
去除空格str='这是含空格'print(f'去除两端空格={str.strip()}')print(f'去除左端空格={str.lstrip()}')print(f'去除右端空格={str.rstrip()}')print(f'去除全部空格={str.replace("","")}')方法返回对象yieldyield':'.join([ip,port])yield{'ranking':ranki
- 开源模型应用落地-qwen2-7b-instruct-LoRA微调&合并-ms-swift-单机多卡-RTX 4090双卡(十五)
开源技术探险家
开源模型-实际应用落地#开源模型-微调实战密码自然语言处理深度学习语言模型
一、前言本篇文章将使用ms-swift去合并微调后的模型权重,通过阅读本文,您将能够更好地掌握这些关键技术,理解其中的关键技术要点,并应用于自己的项目中。二、术语介绍2.1.LoRA微调LoRA(Low-RankAdaptation)用于微调大型语言模型(LLM)。是一种有效的自适应策略,它不会引入额外的推理延迟,并在保持模型质量的同时显着减少下游任务的可训练参数数量。2.2.参数高效微调(PEF
- 2019年12月中国编程语言排行榜
织网者Eric
程序员就业统计程序员统计编程语言排行编程语言工资中国java
2019年12月4日,我统计了某招聘网站,获得有效程序员招聘数据9万条。针对招聘信息,提取编程语言关键字,并统计如下:编程语言比例rankpl_percentage1java33.60%2c/c++16.58%3c#12.59%4javascript12.21%5python7.96%6go7.19%7php4.21%8matlab1.50%9swift0.88%10lua0.84%11perl0
- 使用一个大语言模型对另一个大语言模型进行“调教”
大霸王龙
python人工智能python
使用一个大语言模型对另一个大语言模型进行“调教”(通常称为微调或适配),是一种常见的技术手段,用于让目标模型更好地适应特定的任务、领域或风格。以下是基于搜索结果整理的详细步骤和方法:1.准备工作安装必要的库•Transformers:用于加载和训练模型。•Datasets:用于处理数据集。•PEFT:用于微调,特别是LoRA(Low-RankAdaptation)等技术。•Accelerate:用
- 目前市场上深度学习简介及沿革发展
Allen-Steven
python相关应用深度学习人工智能
深度学习是人工智能和机器学习的重要分支,其模型种类繁多,涵盖多个领域,如计算机视觉、自然语言处理、语音识别等。以下是目前市场上主流的深度学习模型,以及它们的发展历史和逐步沿革。1.感知机(Perceptron)及其扩展发展历史1958年:感知机由FrankRosenblatt提出,这是最早的人工神经网络模型,旨在模拟生物神经网络。局限性:感知机无法处理线性不可分问题,这一问题由MarvinMins
- StarRocks-同步hive-textfile格式数据
blazing fire !!!
StarRocks数据仓库starrocks
官方文档对csv,orc,json,parquet都支持的比较好。写文章的时候SR我们生产用的是3.1.x版本1、同步hive表textfile格式的数据hive表结构CREATEEXTERNALTABLEads_d_app_rank_inc(`filename`stringCOMMENT'解析的文件名称',`rank`stringCOMMENT'app排名',`app_name`stringCO
- 练习15. 窗口函数,RANK、DENSE_RANK、ROW_NUMBER
百里守约学编程
#MySQL练习经典45题sql数据库
15.按各科成绩进行排序,并显示排名,Score重复时也继续排名,即不跳跃排名首先介绍三种用于进行排序的专用窗口函数:1、RANK()在计算排序时,若存在相同位次,会跳过之后的位次。例如,有3条排在第1位时,排序为:1,1,1,4······2、DENSE_RANK()这就是题目中所用到的函数,在计算排序时,若存在相同位次,不会跳过之后的位次。例如,有3条排在第1位时,排序为:1,1,1,2···
- 【llm对话系统】大模型 Llama 源码分析之 LoRA 微调
kakaZhui
llama深度学习pytorchAIGCchatgpt
1.引言微调(Fine-tuning)是将预训练大模型(LLM)应用于下游任务的常用方法。然而,直接微调大模型的所有参数通常需要大量的计算资源和内存。LoRA(Low-RankAdaptation)是一种高效的微调方法,它通过引入少量可训练参数,固定预训练模型的权重,从而在保持性能的同时大大减少了计算开销。本文将深入分析LoRA的原理,并结合Llama源码解读其实现逻辑,最后探讨LoRA的优势。2
- 网络爬虫爬取动态网页数据
db_sqy_2012
爬虫
目录一、导学与指南豆瓣单页分析豆瓣多页输出二、理论学习1.抓取动态网页的技术2.Selenium和WebDriver的安装与配置3.Selenium的基本使用三、小结一、导学与指南豆瓣单页分析importjsonimportrequests#基础URL不顶事了url_base="https://movie.douban.com/typerank?type_name=%E5%89%A7%E6%83%
- MySQL 高级(进阶) SQL 语句
yyytucj
数据库
MySQL是一种功能强大的关系型数据库管理系统。为了有效地利用其高级功能,需要掌握一些进阶的SQL语句和技巧。本文将介绍几种常用的高级SQL语句,包括窗口函数、子查询、联合查询、复杂的连接操作以及事务处理等。1.窗口函数窗口函数是一种高级的SQL功能,用于在查询结果集中计算某些聚合值,同时保留详细数据行。常用的窗口函数包括ROW_NUMBER(),RANK(),DENSE_RANK(),SUM()
- 【第7节】OpenCompass 大模型评测实战
AI扩展坞
大模型LLM书生浦语agent
目录1基础课程笔记1.1研究大模型的评测的必要性1.2OpenCompass介绍1.2.1评测体系开源历程1.2.2如何评测大模型?1.2.2.1设计思路1.2.2.2评测的方法:(1)客观评测(2)主观评测1.2.2.3评测中关于提示词工程优化1.2.3主要产品:工具-基准-榜单三位一体1.2.3.1CompassRank性能榜单1.2.3.2全栈评测工具链1.2.3.3高质量社区-广泛的数据集
- Hive 窗口函数
b1gx
Hivehive窗口函数
文章目录一、常见聚合操作1.sum、avg、min、max二、排序相关的窗口函数1.row_number2.rank3.dense_rank三、其它窗口函数1.NTILE2.cume_dist3.percent_rank4.LAG5.LEAD6.FIRST_VALUE7.LAST_VALUE四、增强聚合操作1.GROUPINGSETS2.CUBE3.ROLLUP4.GROUPING__ID有ORD
- Python酷库之旅-第三方库Pandas(049)
神奇夜光杯
pythonpandas开发语言标准库及第三方库人工智能excel学习与成长
目录一、用法精讲176、pandas.Series.rank方法176-1、语法176-2、参数176-3、功能176-4、返回值176-5、说明176-6、用法176-6-1、数据准备176-6-2、代码示例176-6-3、结果输出177、pandas.Series.sem方法177-1、语法177-2、参数177-3、功能177-4、返回值177-5、说明177-6、用法177-6-1、数据准
- 【Lora微调】提高模型效率的创新方法
@fishv
人工智能大模型微调Lora
前言在自然语言处理(NLP)和机器学习的研究和应用中,随着模型规模的不断扩大,模型训练的计算成本和存储需求也不断攀升。大型预训练模型,如GPT、BERT等,虽然在许多任务上表现出色,但它们的训练和微调通常需要巨大的计算资源,这使得许多研究者和开发者无法充分利用这些模型进行个性化或领域特定的调整。为了在保持模型性能的同时减少计算开销,**Lora(Low-RankAdaptation)**应运而生。
- 广告计算学 刘鹏 听课笔记
qq415581343
广告计算笔记刘鹏
1.1广告的目的三个主体:advertisermediumaudience广告是非人员的、低成本的用户接触(reach)品牌(brank)广告vs效果(direct)广告:离线转化率vs即时转化1.2广告有效性模型三个阶段选择:曝光-广告位属性;关注-减少干扰、推荐解释、符合需求;解释:理解-用户能看懂;信息接受-认同(广告位不能只看流量,要高大上);态度:保持-艺术性带来的记忆效果;购买-价格可
- Oracle开窗函数详解
实泽有之,无泽虚之
Oracleoracle数据库database
【函数格式】分析函数()OVER([PARTITIONBY分组字段][ORDERBY排序字段])【参数说明】分析函数包括以下几类:聚合函数:count()、sum()、max()、min()、avg()等;排序函数:rank()、dense_rank()、row_number()等;偏移函数:lag()、lead();partitionby:表示根据指定字段进行分组,可省略;orderby:表示根
- linux下使用脚本实现对进程的内存占用自动化监测
浪小满
常用问题解决linux自动化运维内存占用情况监测
linux系统中常用cat/proc/{pid}/status和pmap-x{pid}来监测某个进程的内存资源占用情况。其中注意各参数的含义如下:VmSize:表示进程当前虚拟内存大小VmPeak:表示进程所占用最大虚拟内存大小VmRSS:表示进程当前占用物理内存的大小(与procrank中的RSS,pmap中的RSS一样)VmLck:表示被锁定的内存大小VmHWM:表示进程所占用物理内存的峰值V
- 20 条实用的创业实战指南:初创项目如何提升竞争力?
人工智能
作者:LmrankHan,AllianceDao核心贡献者编译:J1N,TechubNews我最近在SolanaBreakpoint上发表了主题演讲,目的是在有限的时间内为加密货币项目创始人提供尽可能多有价值的信息。我的演讲反响很好,所以我想花点时间详细整理阐述一下,让人们可以快速从中获得收益。从解决小问题开始从解决小问题或设计一个小的领域开始。而不是一开始就瞄准一个庞大的市场,创始人应该专注于解
- Multi-Head Latent Attention: Boosting Inference Efficiency
连理o
LLM
ContentsIntroductionMethodLow-RankKey-ValueJointCompressionDecoupledRotaryPositionEmbeddingReferencesIntroduction作者提出Multi-headLatentAttention(MLA),通过将KV压缩为CompressedLatentKV,在减小KVcache的同时保持模型精度Method
- 【WRF模拟】WRF运行时进程数限制的原因及报错解决方案
WW、forever
WRF模型原理及应用WRF
目录WRF运行时进程数限制的原因网格块的最小尺寸要求嵌套域的尺寸和分辨率进程数与网格划分的关系案例1:四层嵌套错误:ERROR:ReducetheMPIrankcount,orredistributethetasks解决方法参考WRF运行时进程数限制的原因在进行wrf模拟时,若内层网格分辨率较高,模拟时间较久,可适当增加运行内核数,但如何确定合适的内核数呢?太高会导致模型报错,太低又会增加模型运行
- y_t_rank = len(y_t.shape.as_list()) AttributeError: ‘tuple‘ object has no attribute ‘shape‘’
专业混水
tensorflowpythontensorflow深度学习anaconda
在model.fit()的时候遇到了如下问题:Epoch1/400Traceback(mostrecentcalllast):File"F:/code/MYSTUDY/MODEL_version0.0/comparsion/trainST.py",line234,inmain()File"F:/code/MYSTUDY/MODEL_version0.0/comparsion/trainST.py"
- 深度定制:Embedding与Reranker模型的微调艺术
从零开始学习人工智能
embedding人工智能
微调是深度学习中的一种常见做法,它允许模型在预训练的基础上进一步学习特定任务的特定特征。对于Embedding模型,微调的目的是让模型更适配特定的数据集,从而取得更好的召回效果。这通常涉及到使用特定的数据集对模型进行额外的训练,以便模型能够学习到数据集中的特定语义关系。微调过程可以使用不同的库和框架来实现,例如sentence-transformers库,它提供了便捷的API来调整Embeddin
- linux脚本sed替换变量,sed 命令中替换值为shell变量
诺坎普之约
linux脚本sed替换变量
文章目录sed命令中替换值为shell变量替换基本语法sed中替换使用shell变量总结参考文档sed命令中替换值为shell变量替换基本语法大家都是sed有很多用法,最多就应该是替换一些值了。让我们先回忆sed的替换语法。在sed进行替换的时候sed-i's/old/new/g'1.txtecho"hellooldfrank"|sed's/old/new/g'结果如下:hellonewfrank
- 微信开发者验证接口开发
362217990
微信 开发者 token 验证
微信开发者接口验证。
Token,自己随便定义,与微信填写一致就可以了。
根据微信接入指南描述 http://mp.weixin.qq.com/wiki/17/2d4265491f12608cd170a95559800f2d.html
第一步:填写服务器配置
第二步:验证服务器地址的有效性
第三步:依据接口文档实现业务逻辑
这里主要讲第二步验证服务器有效性。
建一个
- 一个小编程题-类似约瑟夫环问题
BrokenDreams
编程
今天群友出了一题:
一个数列,把第一个元素删除,然后把第二个元素放到数列的最后,依次操作下去,直到把数列中所有的数都删除,要求依次打印出这个过程中删除的数。
&
- linux复习笔记之bash shell (5) 关于减号-的作用
eksliang
linux关于减号“-”的含义linux关于减号“-”的用途linux关于“-”的含义linux关于减号的含义
转载请出自出处:
http://eksliang.iteye.com/blog/2105677
管道命令在bash的连续处理程序中是相当重要的,尤其在使用到前一个命令的studout(标准输出)作为这次的stdin(标准输入)时,就显得太重要了,某些命令需要用到文件名,例如上篇文档的的切割命令(split)、还有
- Unix(3)
18289753290
unix ksh
1)若该变量需要在其他子进程执行,则可用"$变量名称"或${变量}累加内容
什么是子进程?在我目前这个shell情况下,去打开一个新的shell,新的那个shell就是子进程。一般状态下,父进程的自定义变量是无法在子进程内使用的,但通过export将变量变成环境变量后就能够在子进程里面应用了。
2)条件判断: &&代表and ||代表or&nbs
- 关于ListView中性能优化中图片加载问题
酷的飞上天空
ListView
ListView的性能优化网上很多信息,但是涉及到异步加载图片问题就会出现问题。
具体参看上篇文章http://314858770.iteye.com/admin/blogs/1217594
如果每次都重新inflate一个新的View出来肯定会造成性能损失严重,可能会出现listview滚动是很卡的情况,还会出现内存溢出。
现在想出一个方法就是每次都添加一个标识,然后设置图
- 德国总理默多克:给国人的一堂“震撼教育”课
永夜-极光
教育
http://bbs.voc.com.cn/topic-2443617-1-1.html德国总理默多克:给国人的一堂“震撼教育”课
安吉拉—默克尔,一位经历过社会主义的东德人,她利用自己的博客,发表一番来华前的谈话,该说的话,都在上面说了,全世界想看想传播——去看看默克尔总理的博客吧!
德国总理默克尔以她的低调、朴素、谦和、平易近人等品格给国人留下了深刻印象。她以实际行动为中国人上了一堂
- 关于Java继承的一个小问题。。。
随便小屋
java
今天看Java 编程思想的时候遇见一个问题,运行的结果和自己想想的完全不一样。先把代码贴出来!
//CanFight接口
interface Canfight {
void fight();
}
//ActionCharacter类
class ActionCharacter {
public void fight() {
System.out.pr
- 23种基本的设计模式
aijuans
设计模式
Abstract Factory:提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类。 Adapter:将一个类的接口转换成客户希望的另外一个接口。A d a p t e r模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作。 Bridge:将抽象部分与它的实现部分分离,使它们都可以独立地变化。 Builder:将一个复杂对象的构建与它的表示分离,使得同
- 《周鸿祎自述:我的互联网方法论》读书笔记
aoyouzi
读书笔记
从用户的角度来看,能解决问题的产品才是好产品,能方便/快速地解决问题的产品,就是一流产品.
商业模式不是赚钱模式
一款产品免费获得海量用户后,它的边际成本趋于0,然后再通过广告或者增值服务的方式赚钱,实际上就是创造了新的价值链.
商业模式的基础是用户,木有用户,任何商业模式都是浮云.商业模式的核心是产品,本质是通过产品为用户创造价值.
商业模式还包括寻找需求
- JavaScript动态改变样式访问技术
百合不是茶
JavaScriptstyle属性ClassName属性
一:style属性
格式:
HTML元素.style.样式属性="值";
创建菜单:在html标签中创建 或者 在head标签中用数组创建
<html>
<head>
<title>style改变样式</title>
</head>
&l
- jQuery的deferred对象详解
bijian1013
jquerydeferred对象
jQuery的开发速度很快,几乎每半年一个大版本,每两个月一个小版本。
每个版本都会引入一些新功能,从jQuery 1.5.0版本开始引入的一个新功能----deferred对象。
&nb
- 淘宝开放平台TOP
Bill_chen
C++c物流C#
淘宝网开放平台首页:http://open.taobao.com/
淘宝开放平台是淘宝TOP团队的产品,TOP即TaoBao Open Platform,
是淘宝合作伙伴开发、发布、交易其服务的平台。
支撑TOP的三条主线为:
1.开放数据和业务流程
* 以API数据形式开放商品、交易、物流等业务;
&
- 【大型网站架构一】大型网站架构概述
bit1129
网站架构
大型互联网特点
面对海量用户、海量数据
大型互联网架构的关键指标
高并发
高性能
高可用
高可扩展性
线性伸缩性
安全性
大型互联网技术要点
前端优化
CDN缓存
反向代理
KV缓存
消息系统
分布式存储
NoSQL数据库
搜索
监控
安全
想到的问题:
1.对于订单系统这种事务型系统,如
- eclipse插件hibernate tools安装
白糖_
Hibernate
eclipse helios(3.6)版
1.启动eclipse 2.选择 Help > Install New Software...> 3.添加如下地址:
http://download.jboss.org/jbosstools/updates/stable/helios/ 4.选择性安装:hibernate tools在All Jboss tool
- Jquery easyui Form表单提交注意事项
bozch
jquery easyui
jquery easyui对表单的提交进行了封装,提交的方式采用的是ajax的方式,在开发的时候应该注意的事项如下:
1、在定义form标签的时候,要将method属性设置成post或者get,特别是进行大字段的文本信息提交的时候,要将method设置成post方式提交,否则页面会抛出跨域访问等异常。所以这个要
- Trie tree(字典树)的Java实现及其应用-统计以某字符串为前缀的单词的数量
bylijinnan
java实现
import java.util.LinkedList;
public class CaseInsensitiveTrie {
/**
字典树的Java实现。实现了插入、查询以及深度优先遍历。
Trie tree's java implementation.(Insert,Search,DFS)
Problem Description
Igna
- html css 鼠标形状样式汇总
chenbowen00
htmlcss
css鼠标手型cursor中hand与pointer
Example:CSS鼠标手型效果 <a href="#" style="cursor:hand">CSS鼠标手型效果</a><br/>
Example:CSS鼠标手型效果 <a href="#" style=&qu
- [IT与投资]IT投资的几个原则
comsci
it
无论是想在电商,软件,硬件还是互联网领域投资,都需要大量资金,虽然各个国家政府在媒体上都给予大家承诺,既要让市场的流动性宽松,又要保持经济的高速增长....但是,事实上,整个市场和社会对于真正的资金投入是非常渴望的,也就是说,表面上看起来,市场很活跃,但是投入的资金并不是很充足的......
- oracle with语句详解
daizj
oraclewithwith as
oracle with语句详解 转
在oracle中,select 查询语句,可以使用with,就是一个子查询,oracle 会把子查询的结果放到临时表中,可以反复使用
例子:注意,这是sql语句,不是pl/sql语句, 可以直接放到jdbc执行的
----------------------------------------------------------------
- hbase的简单操作
deng520159
数据库hbase
近期公司用hbase来存储日志,然后再来分析 ,把hbase开发经常要用的命令找了出来.
用ssh登陆安装hbase那台linux后
用hbase shell进行hbase命令控制台!
表的管理
1)查看有哪些表
hbase(main)> list
2)创建表
# 语法:create <table>, {NAME => <family&g
- C语言scanf继续学习、算术运算符学习和逻辑运算符
dcj3sjt126com
c
/*
2013年3月11日20:37:32
地点:北京潘家园
功能:完成用户格式化输入多个值
目的:学习scanf函数的使用
*/
# include <stdio.h>
int main(void)
{
int i, j, k;
printf("please input three number:\n"); //提示用
- 2015越来越好
dcj3sjt126com
歌曲
越来越好
房子大了电话小了 感觉越来越好
假期多了收入高了 工作越来越好
商品精了价格活了 心情越来越好
天更蓝了水更清了 环境越来越好
活得有奔头人会步步高
想做到你要努力去做到
幸福的笑容天天挂眉梢 越来越好
婆媳和了家庭暖了 生活越来越好
孩子高了懂事多了 学习越来越好
朋友多了心相通了 大家越来越好
道路宽了心气顺了 日子越来越好
活的有精神人就不显
- java.sql.SQLException: Value '0000-00-00' can not be represented as java.sql.Tim
feiteyizu
mysql
数据表中有记录的time字段(属性为timestamp)其值为:“0000-00-00 00:00:00”
程序使用select 语句从中取数据时出现以下异常:
java.sql.SQLException:Value '0000-00-00' can not be represented as java.sql.Date
java.sql.SQLException: Valu
- Ehcache(07)——Ehcache对并发的支持
234390216
并发ehcache锁ReadLockWriteLock
Ehcache对并发的支持
在高并发的情况下,使用Ehcache缓存时,由于并发的读与写,我们读的数据有可能是错误的,我们写的数据也有可能意外的被覆盖。所幸的是Ehcache为我们提供了针对于缓存元素Key的Read(读)、Write(写)锁。当一个线程获取了某一Key的Read锁之后,其它线程获取针对于同
- mysql中blob,text字段的合成索引
jackyrong
mysql
在mysql中,原来有一个叫合成索引的,可以提高blob,text字段的效率性能,
但只能用在精确查询,核心是增加一个列,然后可以用md5进行散列,用散列值查找
则速度快
比如:
create table abc(id varchar(10),context blog,hash_value varchar(40));
insert into abc(1,rep
- 逻辑运算与移位运算
latty
位运算逻辑运算
源码:正数的补码与原码相同例+7 源码:00000111 补码 :00000111 (用8位二进制表示一个数)
负数的补码:
符号位为1,其余位为该数绝对值的原码按位取反;然后整个数加1。 -7 源码: 10000111 ,其绝对值为00000111 取反加一:11111001 为-7补码
已知一个数的补码,求原码的操作分两种情况:
- 利用XSD 验证XML文件
newerdragon
javaxmlxsd
XSD文件 (XML Schema 语言也称作 XML Schema 定义(XML Schema Definition,XSD)。 具体使用方法和定义请参看:
http://www.w3school.com.cn/schema/index.asp
java自jdk1.5以上新增了SchemaFactory类 可以实现对XSD验证的支持,使用起来也很方便。
以下代码可用在J
- 搭建 CentOS 6 服务器(12) - Samba
rensanning
centos
(1)安装
# yum -y install samba
Installed:
samba.i686 0:3.6.9-169.el6_5
# pdbedit -a rensn
new password:123456
retype new password:123456
……
(2)Home文件夹
# mkdir /etc
- Learn Nodejs 01
toknowme
nodejs
(1)下载nodejs
https://nodejs.org/download/ 选择相应的版本进行下载 (2)安装nodejs 安装的方式比较多,请baidu下
我这边下载的是“node-v0.12.7-linux-x64.tar.gz”这个版本 (1)上传服务器 (2)解压 tar -zxvf node-v0.12.
- jquery控制自动刷新的代码举例
xp9802
jquery
1、html内容部分 复制代码代码示例: <div id='log_reload'>
<select name="id_s" size="1">
<option value='2'>-2s-</option>
<option value='3'>-3s-</option