本文为senlie原创,转载请保留此地址:http://blog.csdn.net/zhengsenlie
list
----------------------------------------------------------------------list L;
L.push_back(0);
L.push_front(1);
L.insert(++L.begin(), 2);
copy(L.begin(), L.end(), ostream_iterator(cout, " "));
// The values that are printed are 1 2 0
示例2:
#include
#include
#include
#include
#include
using namespace std;
list mylist1, mylist2;
void display(){
cout << "-------------------------------------------------------" << endl;
copy(mylist1.begin(), mylist1.end(), ostream_iterator(cout, " "));
cout << endl;
copy(mylist2.begin(), mylist2.end(), ostream_iterator(cout, " "));
cout << endl;
}
int main(){
list::iterator it;
for(int i = 1; i <= 4; i++) mylist1.push_back(i); //1 2 3 4
for(int i = 1; i <= 3; i++) mylist2.push_back(i * 10); // 10 20 30
it = mylist1.begin();
++it; // it 指向元素 2
display();
mylist1.splice(it, mylist2);
display();
/* mylist1: 1 10 20 30 2 3 4
mylist2: 空
it 还是指向元素 2
*/
mylist2.splice(mylist2.begin(), mylist1, it);
display();
/* mylist1: 1 10 20 30 3 4
mylist2: 2
it 现在 invalid
*/
it = mylist1.begin();
advance(it, 3);
mylist1.splice(mylist1.begin(), mylist1, it, mylist1.end());
display();
it = mylist1.begin();
advance(it, 3);
list::iterator pos = mylist1.begin();
advance(pos,4);
mylist1.splice(pos, mylist1, it, mylist1.end()); //出错了,position 不能位于 [first, last) 之内 --> 感觉这样设计不好,不能编译期提醒,至少要在运行期提醒吧。。。
display();
}
#ifndef __SGI_STL_INTERNAL_LIST_H
#define __SGI_STL_INTERNAL_LIST_H
__STL_BEGIN_NAMESPACE
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1174
#endif
//list的节点,这是一个双向链表
template
struct __list_node {
typedef void* void_pointer;
void_pointer next;
void_pointer prev;
T data;
};
//list迭代器的设计。(vector的迭代器不需要单独设计,用原生指针就可以)
template
struct __list_iterator {
typedef __list_iterator iterator;
typedef __list_iterator const_iterator;
typedef __list_iterator self;
typedef bidirectional_iterator_tag iterator_category;
typedef T value_type;
typedef Ptr pointer;
typedef Ref reference;
typedef __list_node* link_type;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
link_type node; // 指向 list 节点的指针
__list_iterator(link_type x) : node(x) {}
__list_iterator() {}
__list_iterator(const iterator& x) : node(x.node) {}
bool operator==(const self& x) const { return node == x.node; }
bool operator!=(const self& x) const { return node != x.node; }
//取节点的数据值
reference operator*() const { return (*node).data; }
#ifndef __SGI_STL_NO_ARROW_OPERATOR
pointer operator->() const { return &(operator*()); }
#endif /* __SGI_STL_NO_ARROW_OPERATOR */
//迭代器累加 1, 前进一个节点
self& operator++() {
node = (link_type)((*node).next);
// 因为 __list_node 里的 prev 和 next 的类型是 void * ,
//所以还要将它们显示转换为 link_type 类型,即 __list_node * 类型
return *this;
}
self operator++(int) {
self tmp = *this;
++*this;
return tmp;
}
//迭代器递减 1,后退一个节点
self& operator--() {
node = (link_type)((*node).prev);
return *this;
}
self operator--(int) {
self tmp = *this;
--*this;
return tmp;
}
};
#ifndef __STL_CLASS_PARTIAL_SPECIALIZATION
template
inline bidirectional_iterator_tag
iterator_category(const __list_iterator&) {
return bidirectional_iterator_tag();
}
template
inline T*
value_type(const __list_iterator&) {
return 0;
}
template
inline ptrdiff_t*
distance_type(const __list_iterator&) {
return 0;
}
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
//list的数据结构
template
class list {
protected:
typedef void* void_pointer;
typedef __list_node list_node;
//空间配置器,每次配置一个节点大小
typedef simple_alloc list_node_allocator;
public:
typedef T value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef list_node* link_type;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
public:
typedef __list_iterator iterator;
typedef __list_iterator const_iterator;
#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
typedef reverse_iterator const_reverse_iterator;
typedef reverse_iterator reverse_iterator;
#else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
typedef reverse_bidirectional_iterator
const_reverse_iterator;
typedef reverse_bidirectional_iterator
reverse_iterator;
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
protected:
//配置一个节点并传回
link_type get_node() { return list_node_allocator::allocate(); }
//释放 p 指向的节点空间
void put_node(link_type p) { list_node_allocator::deallocate(p); }
//配置并构造一个节点使它的值为 x
link_type create_node(const T& x) {
link_type p = get_node();
__STL_TRY {
construct(&p->data, x);
}
__STL_UNWIND(put_node(p));
return p;
}
//析构并释放一个节点
void destroy_node(link_type p) {
destroy(&p->data);
put_node(p);
}
protected:
void empty_initialize() {
node = get_node(); //配置一个节点空间,令 node 指向它
node->next = node; // 令 node 的头尾都指向自己,不设元素值
node->prev = node;
}
void fill_initialize(size_type n, const T& value) {
empty_initialize();
__STL_TRY {
insert(begin(), n, value);
}
__STL_UNWIND(clear(); put_node(node));
}
#ifdef __STL_MEMBER_TEMPLATES
template
void range_initialize(InputIterator first, InputIterator last) {
empty_initialize();
__STL_TRY {
insert(begin(), first, last);
}
__STL_UNWIND(clear(); put_node(node));
}
#else /* __STL_MEMBER_TEMPLATES */
void range_initialize(const T* first, const T* last) {
empty_initialize();
__STL_TRY {
insert(begin(), first, last);
}
__STL_UNWIND(clear(); put_node(node));
}
void range_initialize(const_iterator first, const_iterator last) {
empty_initialize();
__STL_TRY {
insert(begin(), first, last);
}
__STL_UNWIND(clear(); put_node(node));
}
#endif /* __STL_MEMBER_TEMPLATES */
protected:
link_type node; //只要一个指针,便可表示整个环状双向链表。
// node指向刻意置于尾端的一个空白节点,满足"前闭后开"
public:
list() { empty_initialize(); } // 产生一个空链表
iterator begin() { return (link_type)((*node).next); }
const_iterator begin() const { return (link_type)((*node).next); }
iterator end() { return node; }
const_iterator end() const { return node; }
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
bool empty() const { return node->next == node; }
size_type size() const {
size_type result = 0;
distance(begin(), end(), result);
return result;
}
size_type max_size() const { return size_type(-1); }
reference front() { return *begin(); }
const_reference front() const { return *begin(); }
reference back() { return *(--end()); }
const_reference back() const { return *(--end()); }
void swap(list& x) { __STD::swap(node, x.node); }
//在迭代器 positioni 所指空间插入一个节点,内容为 x
iterator insert(iterator position, const T& x) {
//使用 create_node 配置并构造一个节点,让它的值为 x
link_type tmp = create_node(x);
//调整双向指针,使 tmp 插入进去
tmp->next = position.node;
tmp->prev = position.node->prev;
(link_type(position.node->prev))->next = tmp;
position.node->prev = tmp;
return tmp;
}
iterator insert(iterator position) { return insert(position, T()); }
#ifdef __STL_MEMBER_TEMPLATES
template
void insert(iterator position, InputIterator first, InputIterator last);
#else /* __STL_MEMBER_TEMPLATES */
void insert(iterator position, const T* first, const T* last);
void insert(iterator position,
const_iterator first, const_iterator last);
#endif /* __STL_MEMBER_TEMPLATES */
void insert(iterator pos, size_type n, const T& x);
void insert(iterator pos, int n, const T& x) {
insert(pos, (size_type)n, x);
}
void insert(iterator pos, long n, const T& x) {
insert(pos, (size_type)n, x);
}
void push_front(const T& x) { insert(begin(), x); }
void push_back(const T& x) { insert(end(), x); }
iterator erase(iterator position) {
link_type next_node = link_type(position.node->next);
link_type prev_node = link_type(position.node->prev);
prev_node->next = next_node;
next_node->prev = prev_node;
destroy_node(position.node);
return iterator(next_node);
}
iterator erase(iterator first, iterator last);
void resize(size_type new_size, const T& x);
void resize(size_type new_size) { resize(new_size, T()); }
void clear();
void pop_front() { erase(begin()); } //移除头节点
void pop_back() { //移除尾节点 其实可能直接 erase(--end()); 不过效果一样
iterator tmp = end();
erase(--tmp);
}
list(size_type n, const T& value) { fill_initialize(n, value); }
list(int n, const T& value) { fill_initialize(n, value); }
list(long n, const T& value) { fill_initialize(n, value); }
explicit list(size_type n) { fill_initialize(n, T()); }
#ifdef __STL_MEMBER_TEMPLATES
template
list(InputIterator first, InputIterator last) {
range_initialize(first, last);
}
#else /* __STL_MEMBER_TEMPLATES */
list(const T* first, const T* last) { range_initialize(first, last); }
list(const_iterator first, const_iterator last) {
range_initialize(first, last);
}
#endif /* __STL_MEMBER_TEMPLATES */
list(const list& x) {
range_initialize(x.begin(), x.end());
}
~list() {
clear();
put_node(node);
}
list& operator=(const list& x);
protected:
//将某连续范围[first, last)的元素迁移到某个特定位置 position 之前
//非公开接口
void transfer(iterator position, iterator first, iterator last) {
if (position != last) { //如果 position == last 那就不用迁移了
(*(link_type((*last.node).prev))).next = position.node;
(*(link_type((*first.node).prev))).next = last.node;
(*(link_type((*position.node).prev))).next = first.node;
link_type tmp = link_type((*position.node).prev);
(*position.node).prev = (*last.node).prev;
(*last.node).prev = (*first.node).prev;
(*first.node).prev = tmp;
}
}
public:
//将 x 接合于 position 所指位置之前。 x 必须不同于 *this --> 这样限制 x 好吗? 不应该提前到编译期提醒客户端吗?我试了下 x 等于 *this,运行没出错
void splice(iterator position, list& x) {
if (!x.empty())
transfer(position, x.begin(), x.end());
}
//将 i 所指元素接合于 position 所指位置之前。 position 和 i 可指向同一个 list
// ?? 这里 list &参数有什么用? --> 我感觉没用,有迭代器 i 就够了
void splice(iterator position, list&, iterator i) {
iterator j = i;
++j;
if (position == i || position == j) return; //transfer 里有判断 position == j 的情况,没判断 position == i 的情况,而将自己移到自己前面什么都不用做
transfer(position, i, j);
}
//将 [first, last) 内的所有元素接合于 position 所指位置之前
// position 和 [first, last) 可指向同一个 list,
// 但 position 不能位于 [first, last) 之内
void splice(iterator position, list&, iterator first, iterator last) {
if (first != last)
transfer(position, first, last);
}
void remove(const T& value);
void unique();
void merge(list& x);
void reverse();
void sort();
#ifdef __STL_MEMBER_TEMPLATES
template void remove_if(Predicate);
template void unique(BinaryPredicate);
template void merge(list&, StrictWeakOrdering);
template void sort(StrictWeakOrdering);
#endif /* __STL_MEMBER_TEMPLATES */
friend bool operator== __STL_NULL_TMPL_ARGS (const list& x, const list& y);
};
template
inline bool operator==(const list& x, const list& y) {
typedef typename list::link_type link_type;
link_type e1 = x.node;
link_type e2 = y.node;
link_type n1 = (link_type) e1->next;
link_type n2 = (link_type) e2->next;
for ( ; n1 != e1 && n2 != e2 ;
n1 = (link_type) n1->next, n2 = (link_type) n2->next)
if (n1->data != n2->data)
return false;
return n1 == e1 && n2 == e2;
}
template
inline bool operator<(const list& x, const list& y) {
return lexicographical_compare(x.begin(), x.end(), y.begin(), y.end());
}
#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template
inline void swap(list& x, list& y) {
x.swap(y);
}
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
#ifdef __STL_MEMBER_TEMPLATES
template template
void list::insert(iterator position,
InputIterator first, InputIterator last) {
for ( ; first != last; ++first)
insert(position, *first);
}
#else /* __STL_MEMBER_TEMPLATES */
template
void list::insert(iterator position, const T* first, const T* last) {
for ( ; first != last; ++first)
insert(position, *first);
}
template
void list::insert(iterator position,
const_iterator first, const_iterator last) {
for ( ; first != last; ++first)
insert(position, *first);
}
#endif /* __STL_MEMBER_TEMPLATES */
template
void list::insert(iterator position, size_type n, const T& x) {
for ( ; n > 0; --n)
insert(position, x);
}
template
list::iterator list::erase(iterator first, iterator last) {
while (first != last) erase(first++);
return last;
}
template
void list::resize(size_type new_size, const T& x)
{
iterator i = begin();
size_type len = 0;
for ( ; i != end() && len < new_size; ++i, ++len)
;
if (len == new_size)
erase(i, end());
else // i == end()
insert(end(), new_size - len, x);
}
template
void list::clear()
{
link_type cur = (link_type) node->next;
while (cur != node) { //遍历每一个节点
link_type tmp = cur;
cur = (link_type) cur->next;
destroy_node(tmp); //析构并释放一个节点
}
node->next = node; //恢复空链表时的节点状态
node->prev = node;
}
template
list& list::operator=(const list& x) {
if (this != &x) {
iterator first1 = begin();
iterator last1 = end();
const_iterator first2 = x.begin();
const_iterator last2 = x.end();
while (first1 != last1 && first2 != last2) *first1++ = *first2++;
if (first2 == last2)
erase(first1, last1);
else
insert(last1, first2, last2);
}
return *this;
}
//将数值为 value 之所有元素移除
template
void list::remove(const T& value) {
iterator first = begin();
iterator last = end();
while (first != last) {
iterator next = first;
++next;
if (*first == value) erase(first);
first = next;
}
}
//移除连续相同的元素,只保留一个
template
void list::unique() {
iterator first = begin();
iterator last = end();
if (first == last) return; //空链表,什么都不必做
iterator next = first;
while (++next != last) { //遍历每一个节点
if (*first == *next) //相同移除之
erase(next);
else //不同调整指针指向
first = next;
next = first;
}
}
template
void list::merge(list& x) {
iterator first1 = begin();
iterator last1 = end();
iterator first2 = x.begin();
iterator last2 = x.end();
while (first1 != last1 && first2 != last2)
if (*first2 < *first1) {
iterator next = first2;
transfer(first1, first2, ++next);
first2 = next;
}
else
++first1;
if (first2 != last2) transfer(last1, first2, last2);
}
// reverse() 将 *this 的内容逆向重置
template
void list::reverse() {
if (node->next == node || link_type(node->next)->next == node) return;
iterator first = begin();
++first;
while (first != end()) {
iterator old = first;
++first;
transfer(begin(), old, first);
}
}
/* list 不能使用 STL 算法 sort(), 必须使用自己的 sort() 成员函数
因为 STL 算法 sort() 只接受 RandomAccessItertor
?? STL 算法 sort() 为什么不设计接受 BidirectionalIterator
不过我觉得即使 STL 算法 sort() 接受 BidirectionalIterator , 它里面实现也是
用类似 iter_swap 的方法,这里也要针对链表的特点重新写 sort() 函数
/*
template
void list::sort() {
//
if (node->next == node || link_type(node->next)->next == node) return;
list carry;
list counter[64];
int fill = 0;
while (!empty()) {
carry.splice(carry.begin(), *this, begin());
int i = 0;
while(i < fill && !counter[i].empty()) {
counter[i].merge(carry);
carry.swap(counter[i++]);
}
carry.swap(counter[i]);
if (i == fill) ++fill;
}
for (int i = 1; i < fill; ++i) counter[i].merge(counter[i-1]);
swap(counter[fill-1]);
}
#ifdef __STL_MEMBER_TEMPLATES
template template
void list::remove_if(Predicate pred) {
iterator first = begin();
iterator last = end();
while (first != last) {
iterator next = first;
++next;
if (pred(*first)) erase(first);
first = next;
}
}
template template
void list::unique(BinaryPredicate binary_pred) {
iterator first = begin();
iterator last = end() while (++next != last) {
if (binary_pred(*first, *next))
erase(next);
else
first = next;
next = first;
}
}
template template
void list::merge(list& x, StrictWeakOrdering comp) {
iterator first1 = begin();
iterator last1 = end();
iterator first2 = x.begin();
iterator last2 = x.end();
while (first1 != last1 && first2 != last2)
if (comp(*first2, *first1)) {
iterator next = first2;
transfer(first1, first2, ++next);
first2 = next;
}
else
++first1;
if (first2 != last2) transfer(last1, first2, last2);
}
template template
void list::sort(StrictWeakOrdering comp) {
if (node->next == node || link_type(node->next)->next == node) return;
list carry;
list counter[64];
int fill = 0;
while (!empty()) {
carry.splice(carry.begin(), *this, begin());
int i = 0;
while(i < fill && !counter[i].empty()) {
counter[i].merge(carry, comp);
carry.swap(counter[i++]);
}
carry.swap(counter[i]);
if (i == fill) ++fill;
}
for (int i = 1; i < fill; ++i) counter[i].merge(counter[i-1], comp);
swap(counter[fill-1]);
}
#endif /* __STL_MEMBER_TEMPLATES */
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1174
#endif
__STL_END_NAMESPACE
#endif /* __SGI_STL_INTERNAL_LIST_H */
// Local Variables:
// mode:C++
// End: