STL中链表list是一个常用的容器。list在内存中是不连续的双向链表,且是环形的。要了解链表细节是如何操作的话,阅读STL关于链表的代码是最好的方法。
G++ 2.91.57,cygnus\cygwin-b20\include\g++\stl_list.h 完整列表
/*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1996,1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
*/
#ifndef __SGI_STL_INTERNAL_LIST_H
#define __SGI_STL_INTERNAL_LIST_H
__STL_BEGIN_NAMESPACE
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1174
#endif
// List结点结构,List是双向的
template
struct __list_node {
typedef void* void_pointer;
void_pointer next; // 其实可以设为 __list_node*
void_pointer prev;
T data;
};
//list是一个双向链表,其迭代器可以向前移、向后移
//因此迭代器类型为bidirectional_iterator_tag
template
struct __list_iterator { // 没有继承 std::iterator
typedef __list_iterator iterator;
typedef __list_iterator const_iterator;
typedef __list_iterator self;
// 没有继承 std::iterator,自己定义迭代器5个类别
typedef bidirectional_iterator_tag iterator_category; // (1)
typedef T value_type; // (2)
typedef Ptr pointer; // (3)
typedef Ref reference; // (4)
typedef __list_node* link_type;
typedef size_t size_type;
typedef ptrdiff_t difference_type; // (5)
link_type node; // 原生态指针,指向实际的List结点
//迭代器的构造函数
__list_iterator(link_type x) : node(x) {}
__list_iterator() {}
__list_iterator(const iterator& x) : node(x.node) {}
// 迭代器需要重载的运算符,为了支持标准算法STL
bool operator==(const self& x) const { return node == x.node; }
bool operator!=(const self& x) const { return node != x.node; }
//对迭代器dereference,取的是迭代器所维护的结点的值
reference operator*() const { return (*node).data; }
#ifndef __SGI_STL_NO_ARROW_OPERATOR //如果支持->操作
/*
返回的是所维护结点的地址(可以理解为指针)。
这时,可以把迭代器当作原生态指针来调用结点的函数
*/
pointer operator->() const { return &(operator*()); }
#endif /* __SGI_STL_NO_ARROW_OPERATOR */
//迭代器前进、后退的支持
self& operator++() {
node = (link_type)((*node).next);
return *this;
}
self operator++(int) {
self tmp = *this;
++*this;
return tmp;
}
self& operator--() {
node = (link_type)((*node).prev);
return *this;
}
self operator--(int) {
self tmp = *this;
--*this;
return tmp;
}
};
//如果编译器不支持partial specialization偏特性化
#ifndef __STL_CLASS_PARTIAL_SPECIALIZATION
template
inline bidirectional_iterator_tag
iterator_category(const __list_iterator&) {
return bidirectional_iterator_tag();
}
template
inline T*
value_type(const __list_iterator&) {
return 0;
}
template
inline ptrdiff_t*
distance_type(const __list_iterator&) {
return 0;
}
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
//下面是List的定义
template // 默认为 alloc 为配置器
class list {
protected:
typedef void* void_pointer;
typedef __list_node list_node;
// List的空间配置器,每次只配置一个结点
typedef simple_alloc list_node_allocator;
public:
typedef T value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef list_node* link_type;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
public:
/*
当开发者定义一个迭代器时list::iterator,首先调用的是
__list_iterator的构造函数。如果有初始值,便会
因此设定迭代器和容器的联结关系
*/
typedef __list_iterator iterator;
typedef __list_iterator const_iterator;
#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
typedef reverse_iterator const_reverse_iterator;
typedef reverse_iterator reverse_iterator;
#else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
typedef reverse_bidirectional_iterator
const_reverse_iterator;
typedef reverse_bidirectional_iterator
reverse_iterator;
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
protected:
// 配置一个结点(未初始化),返回其指针
link_type get_node() { return list_node_allocator::allocate(); }
// 释放一个结点
void put_node(link_type p) { list_node_allocator::deallocate(p); }
// 配置一个结点,并用x初始化
link_type create_node(const T& x) {
link_type p = get_node();
__STL_TRY {
construct(&p->data, x); // 全局函数
}
__STL_UNWIND(put_node(p));
return p;
}
// 销毁一个结点
void destroy_node(link_type p) {
destroy(&p->data); //全局函数
put_node(p);
}
protected:
//初始化一个空链表,首尾相连
void empty_initialize() {
node = get_node();
node->next = node;
node->prev = node;
}
//初始化长为n的链表,值都为value
void fill_initialize(size_type n, const T& value) {
empty_initialize();
__STL_TRY {
insert(begin(), n, value);
}
__STL_UNWIND(clear(); put_node(node));
}
#ifdef __STL_MEMBER_TEMPLATES
//以迭代器的区间初始化一个链表
template
void range_initialize(InputIterator first, InputIterator last) {
empty_initialize();
__STL_TRY {
insert(begin(), first, last);
}
//commit or rollback
__STL_UNWIND(clear(); put_node(node));
}
#else /* __STL_MEMBER_TEMPLATES */
void range_initialize(const T* first, const T* last) {
empty_initialize();
__STL_TRY {
insert(begin(), first, last);
}
__STL_UNWIND(clear(); put_node(node));
}
void range_initialize(const_iterator first, const_iterator last) {
empty_initialize();
__STL_TRY {
insert(begin(), first, last);
}
__STL_UNWIND(clear(); put_node(node));
}
#endif /* __STL_MEMBER_TEMPLATES */
protected:
/*
List只维护这一个结点,它指向List未结点的下一个位置,即头结点,因为List是一个
环形的双向链表。
该结点是空结点,next指向头结点。
*/
link_type node; // 可以认为它是哨兵结点(在算法导论中有讲哨兵结点)
public:
list() { empty_initialize(); } // 默认构造函数,空链表。
//指向头结点的迭代器
iterator begin() { return (link_type)((*node).next); }
const_iterator begin() const { return (link_type)((*node).next); }
//指向尾结点下一个位置的迭代器,所以返回node
iterator end() { return node; }
const_iterator end() const { return node; }
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
//链表只有node结点时为空链表
bool empty() const { return node->next == node; }
size_type size() const {
size_type result = 0;
distance(begin(), end(), result); // 在定义,result是引用传递
return result;
}
//链表最大容量。没什么意义吧?
size_type max_size() const { return size_type(-1); }
// 取链表头结点的内容
reference front() { return *begin(); }
const_reference front() const { return *begin(); }
// 取链表尾结点的内容
reference back() { return *(--end()); }
const_reference back() const { return *(--end()); }
//交换两个链表
void swap(list& x) { __STD::swap(node, x.node); }
// 在迭代器 position 所指位置前插入一个结点,其值为x。
//在函数中 tmp为指针,返回的却是迭代器
iterator insert(iterator position, const T& x) {
link_type tmp = create_node(x); // 生成结点并用x初始化
// 调整指针
tmp->next = position.node;
tmp->prev = position.node->prev;
//prev和next指针都是void*,所以需要指针类型转换
(link_type(position.node->prev))->next = tmp;
position.node->prev = tmp;
return tmp;
}
//在迭代器 position 所指位置前插入一个结点,其值为T的默认值,这也说明List的元素要有默认构造函数
iterator insert(iterator position) { return insert(position, T()); }
//在position所指位置前插入多个元素
#ifdef __STL_MEMBER_TEMPLATES
template
void insert(iterator position, InputIterator first, InputIterator last);
#else /* __STL_MEMBER_TEMPLATES */
void insert(iterator position, const T* first, const T* last);
void insert(iterator position,
const_iterator first, const_iterator last);
#endif /* __STL_MEMBER_TEMPLATES */
void insert(iterator pos, size_type n, const T& x);
void insert(iterator pos, int n, const T& x) {
insert(pos, (size_type)n, x);
}
void insert(iterator pos, long n, const T& x) {
insert(pos, (size_type)n, x);
}
// 在头结点前插入元素
void push_front(const T& x) { insert(begin(), x); }
// 在尾结点后插入元素
void push_back(const T& x) { insert(end(), x); }
// 移除迭代器 position 所指结点
iterator erase(iterator position) {
link_type next_node = link_type(position.node->next);
link_type prev_node = link_type(position.node->prev);
prev_node->next = next_node;
next_node->prev = prev_node;
destroy_node(position.node);
return iterator(next_node);
}
iterator erase(iterator first, iterator last);
void resize(size_type new_size, const T& x);
void resize(size_type new_size) { resize(new_size, T()); }
void clear();
// 移除头结点
void pop_front() { erase(begin()); }
// 移除尾结点
void pop_back() {
iterator tmp = end();
erase(--tmp);
}
//几个构造函数
list(size_type n, const T& value) { fill_initialize(n, value); }
list(int n, const T& value) { fill_initialize(n, value); }
list(long n, const T& value) { fill_initialize(n, value); }
explicit list(size_type n) { fill_initialize(n, T()); }
//用迭代器区间初始化List
#ifdef __STL_MEMBER_TEMPLATES
template
list(InputIterator first, InputIterator last) {
range_initialize(first, last);
}
#else /* __STL_MEMBER_TEMPLATES */
list(const T* first, const T* last) { range_initialize(first, last); }
list(const_iterator first, const_iterator last) {
range_initialize(first, last);
}
#endif /* __STL_MEMBER_TEMPLATES */
//用一个List初始化
list(const list& x) {
range_initialize(x.begin(), x.end());
}
~list() {
clear();//清除所有结点,哨兵结点除外
put_node(node);//释放唯一的一个结点
}
list& operator=(const list& x);
protected:
// 将[first,last) 內的所有元素搬移到position 前,不包括last元素。
void transfer(iterator position, iterator first, iterator last) {
if (position != last) {
/*
要把[first,last)在原有链表去除,然后安接到position前
(1)-(7)步对应后面的图
*/
(*(link_type((*last.node).prev))).next = position.node; // (1)
(*(link_type((*first.node).prev))).next = last.node; // (2)
(*(link_type((*position.node).prev))).next = first.node; // (3)
link_type tmp = link_type((*position.node).prev); // (4)
(*position.node).prev = (*last.node).prev; // (5)
(*last.node).prev = (*first.node).prev; // (6)
(*first.node).prev = tmp; // (7)
}
}
public:
// 將 x 链表插入到 position 所指位置之前。x 不是 *this。
void splice(iterator position, list& x) {
if (!x.empty())
transfer(position, x.begin(), x.end());
}
// 將 i 所指元素插入到 position 所指位置之前。position 和i 可在同一个list。
void splice(iterator position, list&, iterator i) {
iterator j = i;
++j;
if (position == i || position == j) return;
transfer(position, i, j);
}
// 將 [first,last) 內的所有元素插入到 position 所指位置之前。
// position 和[first,last)可指在同一个list,
// 但position不能位于[first,last)之內。
void splice(iterator position, list&, iterator first, iterator last) {
if (first != last)
transfer(position, first, last);
}
void remove(const T& value);
void unique();
void merge(list& x);
void reverse();
void sort();
#ifdef __STL_MEMBER_TEMPLATES
template void remove_if(Predicate);
template void unique(BinaryPredicate);
template void merge(list&, StrictWeakOrdering);
template void sort(StrictWeakOrdering);
#endif /* __STL_MEMBER_TEMPLATES */
friend bool operator== __STL_NULL_TMPL_ARGS (const list& x, const list& y);
};
//判断2个链表是否相同
template
inline bool operator==(const list& x, const list& y) {
typedef typename list::link_type link_type;
link_type e1 = x.node;
link_type e2 = y.node;
link_type n1 = (link_type) e1->next;
link_type n2 = (link_type) e2->next;
for ( ; n1 != e1 && n2 != e2 ;
n1 = (link_type) n1->next, n2 = (link_type) n2->next)
if (n1->data != n2->data)
return false;
return n1 == e1 && n2 == e2;
}
//lexicographical_compare是STL算法
template
inline bool operator<(const list& x, const list& y) {
return lexicographical_compare(x.begin(), x.end(), y.begin(), y.end());
}
#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template
//交换两个链表
inline void swap(list& x, list& y) {
x.swap(y);
}
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
#ifdef __STL_MEMBER_TEMPLATES
//在position之前插入迭代器区间的元素
template template
void list::insert(iterator position,
InputIterator first, InputIterator last) {
for ( ; first != last; ++first)
insert(position, *first);
}
#else /* __STL_MEMBER_TEMPLATES */
template
void list::insert(iterator position, const T* first, const T* last) {
for ( ; first != last; ++first)
insert(position, *first);
}
template
void list::insert(iterator position,
const_iterator first, const_iterator last) {
for ( ; first != last; ++first)
insert(position, *first);
}
#endif /* __STL_MEMBER_TEMPLATES */
//在position位置之前插入n个元素x
template
void list::insert(iterator position, size_type n, const T& x) {
for ( ; n > 0; --n)
insert(position, x);
}
//擦除两个迭代器区间之间的元素
template
list::iterator list::erase(iterator first, iterator last) {
while (first != last) erase(first++);
return last;
}
/*
重新调整链表大小为 new_size
如果new_size大于原来的链表,则在链表末尾插入x
如果new_size小于原来的链表,则在末尾直接擦除多余的元素
*/
template
void list::resize(size_type new_size, const T& x)
{
iterator i = begin();
size_type len = 0;
for ( ; i != end() && len < new_size; ++i, ++len)
;
if (len == new_size)
erase(i, end());
else // i == end()
insert(end(), new_size - len, x);
}
// 清除所有结点,(哨兵结点除外)
template
void list::clear()
{
link_type cur = (link_type) node->next; // begin()
while (cur != node) {
link_type tmp = cur;
cur = (link_type) cur->next;
destroy_node(tmp);
}
// 恢复哨兵结点,链表此时为空链表
node->next = node;
node->prev = node;
}
//重载赋值=操作符
template
list& list::operator=(const list& x) {
if (this != &x) {//防止自身赋值
iterator first1 = begin();
iterator last1 = end();
const_iterator first2 = x.begin();
const_iterator last2 = x.end();
//通过更改结点的值来赋值
while (first1 != last1 && first2 != last2) *first1++ = *first2++;
/*
如果x链表小于this链表,擦除多余的,否则在this后面插入
*/
if (first2 == last2)
erase(first1, last1);
else
insert(last1, first2, last2);
}
return *this;
}
// 将数值为value的结点移除
template
void list::remove(const T& value) {
iterator first = begin();
iterator last = end();
while (first != last) { // 巡訪每一個節點
iterator next = first;
++next;
if (*first == value) erase(first); // 找到就移除
first = next;
}
}
// 移除数值相同的连续元素
template
void list::unique() {
iterator first = begin();
iterator last = end();
if (first == last) return;
iterator next = first;
while (++next != last) {
if (*first == *next)//如果数值相同,则移除后面的那个
erase(next);
else
first = next;
next = first;
}
}
//将x合并到*this上面。两个链表都要先经过递增排序。相当于合并排序的最后一步
template
void list::merge(list& x) {
iterator first1 = begin();
iterator last1 = end();
iterator first2 = x.begin();
iterator last2 = x.end();
//注意:此时已经假设两个链表都已经非递减排序好了
while (first1 != last1 && first2 != last2)
if (*first2 < *first1) {
iterator next = first2;
transfer(first1, first2, ++next);
first2 = next;
}
else
++first1;
if (first2 != last2) transfer(last1, first2, last2);
}
// 将 *this 的內容逆向重置
template
void list::reverse() {
//如果链表是空,或者只有一个元素,就不做任何处理
//不是用size()==0或size()==1来判断,因为这样比较慢
if (node->next == node || link_type(node->next)->next == node) return;
iterator first = begin();
++first;
while (first != end()) {
iterator old = first;
++first;
transfer(begin(), old, first);
}
}
/*
STL的sort算法只能接受迭代器类型为RamdonAccessIterator的容器,所以list无法
使用,故自己重写排序算法。这里使用的是快速排序。具体可以参考这里:http://blog.csdn.net/zhizichina/article/details/7538974
*/
template
void list::sort() {
if (node->next == node || link_type(node->next)->next == node) return;
// carry作为tmp
list carry;
list counter[64];
int fill = 0;
while (!empty()) {
carry.splice(carry.begin(), *this, begin());
int i = 0;
while(i < fill && !counter[i].empty()) {
counter[i].merge(carry);
carry.swap(counter[i++]);
}
carry.swap(counter[i]);
if (i == fill) ++fill;
}
for (int i = 1; i < fill; ++i)
counter[i].merge(counter[i-1]);
swap(counter[fill-1]);
}
#ifdef __STL_MEMBER_TEMPLATES
/*
pred是一个函数,如果容器内的元素经过pred函数判断为真,则移除
*/
template template
void list::remove_if(Predicate pred) {
iterator first = begin();
iterator last = end();
while (first != last) {
iterator next = first;
++next;
if (pred(*first)) erase(first);
first = next;
}
}
/*
根据函数binary_pred来判断是否移除两个相邻的结点
*/
template template
void list::unique(BinaryPredicate binary_pred) {
iterator first = begin();
iterator last = end();
if (first == last) return;
iterator next = first;
while (++next != last) {
if (binary_pred(*first, *next))
erase(next);
else
first = next;
next = first;
}
}
/*
假设两个链表均已经有序,用comp函数来判断如何合并两个链表
*/
template template
void list::merge(list& x, StrictWeakOrdering comp) {
iterator first1 = begin();
iterator last1 = end();
iterator first2 = x.begin();
iterator last2 = x.end();
while (first1 != last1 && first2 != last2)
if (comp(*first2, *first1)) {
iterator next = first2;
transfer(first1, first2, ++next);
first2 = next;
}
else
++first1;
if (first2 != last2) transfer(last1, first2, last2);
}
/*
用函数comp来判断如何排序链表
*/
template template
void list::sort(StrictWeakOrdering comp) {
if (node->next == node || link_type(node->next)->next == node) return;
list carry;
list counter[64];
int fill = 0;
while (!empty()) {
carry.splice(carry.begin(), *this, begin());
int i = 0;
while(i < fill && !counter[i].empty()) {
counter[i].merge(carry, comp);
carry.swap(counter[i++]);
}
carry.swap(counter[i]);
if (i == fill) ++fill;
}
for (int i = 1; i < fill; ++i) counter[i].merge(counter[i-1], comp);
swap(counter[fill-1]);
}
#endif /* __STL_MEMBER_TEMPLATES */
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1174
#endif
__STL_END_NAMESPACE
#endif /* __SGI_STL_INTERNAL_LIST_H */
// Local Variables:
// mode:C++
// End: