SpEL表达式与Flink FlatMapFunction或MapFunction结合可以实现基于表达式的简单动态计算。有关SpEL表达式的使用请参考Spring SpEL在Flink中的应用-SpEL详解。
可以将计算表达式放入数据库,对数据进行计算处理,从而实现只需修改表达式不用修改Flink代码就能实现数据计算。对于基于Flink进行数据计算平台建设会起到事半功倍的效果。
首先在 pom.xml 中加入依赖:
<dependency>
<groupId>org.springframeworkgroupId>
<artifactId>spring-expressionartifactId>
<version>5.2.0.RELEASEversion>
dependency>
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.types.Row;
import java.text.SimpleDateFormat;
public class FlinkSpelFilterDemo {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
Row row=Row.of("张三","001",getTimestamp("2016-10-24 21:59:06"),23);
Row row2=Row.of("张三","002",getTimestamp("2016-10-24 21:50:06"),33);
Row row3=Row.of("张三","003",getTimestamp("2016-10-24 21:51:06"),43);
Row row4=Row.of("李四","004",getTimestamp("2016-10-24 21:50:56"),13);
Row row5=Row.of("李四","005",getTimestamp("2016-10-24 00:48:36"),53);
Row row6=Row.of("李四","006",getTimestamp("2016-10-24 00:48:36"),34);
Row row7=Row.of("李四","007",getTimestamp("2016-10-24 00:48:36"),23);
Row row8=Row.of("李四","008",getTimestamp("2016-10-24 00:48:36"),26);
Row row9=Row.of("李四","009",getTimestamp("2016-10-24 00:48:36"),63);
DataStreamSource<Row> source =env.fromElements(row,row2,row3,row4,row5,row6,row7,row8,row9);
//spel表达式
//json串数据略
...................
JSONObject spelConfig=".................................";
SingleOutputStreamOperator<Row> stream = source.flatmap(new FlatMapExprFunction (spelConfig));
stream .print();
env.execute();
}
private static java.sql.Timestamp getTimestamp(String str) throws Exception {
// String string = "2016-10-24 21:59:06";
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
java.util.Date date=sdf.parse(str);
java.sql.Timestamp s = new java.sql.Timestamp(date.getTime());
return s;
}
import org.apache.commons.lang3.StringUtils;
import org.apache.flink.api.common.functions.RichFlatMapFunction;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.types.Row;
import org.apache.flink.util.Collector;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.expression.Expression;
import org.springframework.expression.spel.standard.SpelExpressionParser;
import org.springframework.expression.spel.support.StandardEvaluationContext;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
/**
* @author gaowc
* 基于表达式计算的flatmap
*/
public class FlatMapExprFunction extends RichFlatMapFunction<Row, Row> {
private static final Logger logger = LoggerFactory.getLogger(FlatMapExprFunction.class);
/**
* 列名和列的索引map key:列名 value:列索引
*/
private Map<String, Integer> columnIndexMap;
/**
* key:输出字段名 value:表达式对象
*/
private transient Map<String,Expression> expMap;
private Integer size;
private List<JSONObject> outputColumnList;
public FlatMapExprFunction(JSONObject conf){
List<JSONObject > columnList = conf.getList(Constants.COLUMN);
columnIndexMap = TransformUtil.getColumnIndexMap(columnList);
List<JSONObject > outputColumns = conf.getList(Constants.OUTPUT_COLUMN);
//将表达式中的占位符替换为row.getField(x)
size = outputColumns.size();
outputColumnList = new ArrayList<>();
for (JSONObject col:outputColumns) {
String expr = col.getString("expr");
if(StringUtils.isNotBlank(expr)){
ExprTokenParser tokenParser = new ExprTokenParser("#{","}",new ColumnTokenHandler(columnIndexMap));
String newExpr=tokenParser.parse(expr);
logger.info("expr: {} newExpr {}",expr,newExpr);
col.set("expr",newExpr);
}
outputColumnList.add(col);
}
}
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
expMap = new HashMap<>();
//初始化expMap
for (JSONObject col:outputColumnList) {
logger.info("open col:{}",col);
String expr = col.getString("expr");
if(StringUtils.isNotBlank(expr)){
SpelExpressionParser parser = new SpelExpressionParser();
Expression expression = parser.parseExpression(expr);
expMap.put(col.getString(Constants.COLUMN_NAME),expression);
}
}
}
@Override
public void flatMap(Row row, Collector<Row> collector) throws Exception {
Row outputRow=new Row(size);
//注册自定义函数
StandardEvaluationContext conetxt = new StandardEvaluationContext(new SpelMethodUtil());
conetxt.setVariable("row",row);
for (int i = 0; i < size; i++) {
JSONObject col = outputColumnList.get(i);
String colName = col.getString(Constants.COLUMN_NAME);
Expression expression = expMap.get(colName);
Object value = null;
if(expression!=null){
value = expression.getValue(conetxt);
if(value!=null){
logger.info("expression.getValue :{} class {}",value,value.getClass() );
}
}else{
value=row.getField(columnIndexMap.get(colName));
}
outputRow.setField(i,value);
}
collector.collect(outputRow);
}
}
自定义函数类
import org.apache.commons.lang3.StringUtils;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;
public class SpelMethodUtil {
public static final String TIMESTAMP_FORMAT = "yyyy-MM-dd HH:mm:ss";
public static final String DATE_FORMAT = "yyyy-MM-dd";
public static final String TIME_FORMAT = "HH:mm:ss";
public static Integer compareDate(Date date, String strDate){
Integer result;
if(date==null&& StringUtils.isBlank(strDate)){
return 0;
}else{
if(date==null || StringUtils.isBlank(strDate)){
return -2;
}
}
String trimDate=strDate.trim();
String format = findFormat(trimDate);
Date date2 = stringToDate(trimDate, format);
result=date.compareTo(date2);
return result;
}
public static Integer compareDate(Date first, Date second){
if(first==null&& second==null){
return 0;
}else{
if(first==null || second==null){
return -2;
}
}
return first.compareTo(second);
}
public static Date stringToDate(String dateStr,String format){
SimpleDateFormat sdf = new SimpleDateFormat(format);
Date date=null;
try {
date= sdf.parse(dateStr);
} catch (ParseException e) {
e.printStackTrace();
}
return date;
}
/**
* 查找与输入的字符型日期相匹配的format
* @param strDate
* @return
*/
public static String findFormat(String strDate){
String result=null;
String trimDate=strDate.trim();
int len=trimDate.length();
String dateRegex = "";
if(len==TIMESTAMP_FORMAT.length()){
dateRegex = "^\\d{4}-\\d{2}-\\d{2} \\d{2}:\\d{2}:\\d{2}$";
if(trimDate.matches(dateRegex)){
result=TIMESTAMP_FORMAT;
}
}else if(len==DATE_FORMAT.length()){
dateRegex = "^\\d{4}-\\d{2}-\\d{2}$";
if(trimDate.matches(dateRegex)){
result=DATE_FORMAT;
}
}else if(len==TIME_FORMAT.length()){
dateRegex = "^\\d{2}:\\d{2}:\\d{2}$";
if(trimDate.matches(dateRegex)){
result=TIME_FORMAT;
}
}else{
throw new RuntimeException("不可识别的日期格式!"+strDate);
}
return result;
}
public static Integer addAge(Integer age){
return age+4;
}
}
以上只是简单的示例,在实际应用中可以将运算表达式放到数据库,将计算规则放入缓存定时刷新。大家可以根据实际需求进行扩展。