15- OpenCV:模板匹配(cv::matchTemplate)

目录

1、模板匹配介绍

2、cv::matchTemplate

3、模板匹配的方法(算法)

4、代码演示


1、模板匹配介绍

模板匹配就是在整个图像区域发现与给定子图像匹配的小块区域。

它可以在一幅图像中寻找与给定模板最相似的部分。

模板匹配的步骤:

(1)首先需要一个模板图像T(给定的子图像);

(2)另外需要一个待检测的图像-源图像S;

(3)工作方法:在带检测图像上,从左到右,从上向下计算模板图像与重叠子图像的匹配度,匹配程度越大,两者相同的可能性越大。

需要注意的是:matchTemplate函数可以用于在图像中进行目标检测、模式识别等应用,但需要注意模板的大小和比例与输入图像的匹配程度,以及选择合适的匹配方法来获取准确的匹配结果

2、cv::matchTemplate

void cv::matchTemplate(

InputArray image,// 源图像,必须是8-bit或者32-bit浮点数图像

InputArray templ,// 模板图像,类型与输入图像一致

OutputArray result,// 输出结果,必须是单通道32位浮点数,假设源图像WxH,模板图像wxh,                  则结果必须为W-w+1, H-h+1的大小。

int method,//使用的匹配方法

InputArray mask=noArray() //(optional) 可选的掩码图像,用于指定要处理的区域。

)

3、模板匹配的方法(算法)

enum TemplateMatchModes {
    TM_SQDIFF                    = 0,  // 计算平方不同
    TM_SQDIFF_NORMED  = 1,  // 计算归一化平方不同
    TM_CCORR                    = 2,  // 计算相关性
    TM_CCORR_NORMED  = 3,  // 计算归一化相关性
    TM_CCOEFF                   = 4,  // 计算相关系数
    TM_CCOEFF_NORMED = 5   // 计算归一化相关系数
};

相关的公式表示:

15- OpenCV:模板匹配(cv::matchTemplate)_第1张图片

4、代码演示
#include
#include
#include 

using namespace cv;
using namespace std;

// 模板匹配
Mat src, temp, dst;
int match_method = TM_SQDIFF;
int max_track = 5;
const char* INPUT_T = "input image";
const char* OUTPUT_T = "result image";
const char* match_t = "template match-demo";
void Match_Demo(int, void*);
int main(int argc, char** argv) 
{
	// 待检测图像
	src = imread("cat.png");
	// 模板图像
	temp = imread("ear.png");
	if (src.empty() || temp.empty()) 
	{
		printf("could not load image...\n");
		return -1;
	}

	namedWindow(INPUT_T, CV_WINDOW_AUTOSIZE);
	namedWindow(OUTPUT_T, CV_WINDOW_NORMAL);
	namedWindow(match_t, CV_WINDOW_AUTOSIZE);
	imshow(INPUT_T, temp);
	const char* trackbar_title = "Match Algo Type:";
	createTrackbar(trackbar_title, OUTPUT_T, &match_method, max_track, Match_Demo);
	Match_Demo(0, 0);

	waitKey(0);
	return 0;
}

void Match_Demo(int, void*) 
{
	int width = src.cols - temp.cols + 1;
	int height = src.rows - temp.rows + 1;
	Mat result(width, height, CV_32FC1);//32位浮点数,单通道

	matchTemplate(src, temp, result, match_method, Mat());
	normalize(result, result, 0, 1, NORM_MINMAX, -1, Mat());

	Point minLoc;
	Point maxLoc;
	double min, max;
	src.copyTo(dst);
	Point temLoc;

	// 用于在给定矩阵中找到最小值、最大值及其对应的位置。
	minMaxLoc(result, &min, &max, &minLoc, &maxLoc, Mat());
	if (match_method == TM_SQDIFF || match_method == TM_SQDIFF_NORMED) 
		temLoc = minLoc;
	else
		temLoc = maxLoc;

	// 绘制矩形
	rectangle(dst, Rect(temLoc.x, temLoc.y, temp.cols, temp.rows), Scalar(0, 0, 255), 2, 8);
	rectangle(result, Rect(temLoc.x, temLoc.y, temp.cols, temp.rows), Scalar(0, 0, 255), 2, 8);

	imshow(OUTPUT_T, result);
	imshow(match_t, dst);
}


// 简易版例子
#if 0
int main()
{
	// 读取输入图像和模板图像

	cv::Mat image = cv::imread("cat.png", cv::IMREAD_COLOR);
	cv::Mat templ = cv::imread("ear.png", cv::IMREAD_COLOR);

	// 创建结果矩阵

	cv::Mat result;

	// 进行模板匹配

	cv::matchTemplate(image, templ, result, cv::TM_CCOEFF_NORMED);

	// 寻找最大匹配值和对应位置

	double minVal, maxVal;
	cv::Point minLoc, maxLoc;
	cv::minMaxLoc(result, &minVal, &maxVal, &minLoc, &maxLoc);

	// 绘制矩形框标记匹配位置

	cv::rectangle(image, maxLoc, cv::Point(maxLoc.x + templ.cols, maxLoc.y + templ.rows), cv::Scalar(0, 255, 0), 2);

	// 显示结果图像

	cv::imshow("Result", image);
	cv::waitKey(0);

	return 0;
}
#endif

效果展示:

15- OpenCV:模板匹配(cv::matchTemplate)_第2张图片

注意:当选择2的时候,有可能找不到,原因在于我们选择的模板有关,有可能存在失真的效果。所以对于模板如何选择也很关键。

你可能感兴趣的:(OpenCV,opencv,计算机视觉,人工智能,模板匹配)