C++--入门(内联函数&&auto&&基于范围的for循环&&指针空值nullptr)

目录

1.内联函数

1.1概念

1.2特性

1.3 面试题 

 2.auto关键字(C++11)

2.1类型别名思考

2.2auto简介

 2.3auto的使用细则

2.4auto不能推导的场景

3.基于范围的for循环(C++11)

3.1 范围for的语法

 3.2范围for的使用条件

 4.指针空值nullptr(C++11)

4.1C++98中的指针空值


1.内联函数


1.1概念

        以inline修饰的函数叫做内联函数,编译时C++编译器会在调用内联函数的地方展开,没有函数调用建立栈帧的开销,内联函数提升程序运行的效率。(并不是所有的函数都加上内联,内联也是有缺陷的C++--入门(内联函数&&auto&&基于范围的for循环&&指针空值nullptr)_第1张图片

如果在上述函数前增加inline关键字将其改成内联函数,在编译期间编译器会用函数体替换函数的调用。
查看方式:
1. 在release模式下,查看编译器生成的汇编代码中是否存在call Add
2. 在debug模式下,需要对编译器进行设置,否则不会展开(因为debug模式下,编译器默认不会对代码进行优化,以下给出vs2013的设置方式)
C++--入门(内联函数&&auto&&基于范围的for循环&&指针空值nullptr)_第2张图片C++--入门(内联函数&&auto&&基于范围的for循环&&指针空值nullptr)_第3张图片


1.2特性

1. inline是一种以空间换时间的做法,如果编译器将函数当成内联函数处理,在编译阶段,会
用函数体替换函数调用
,缺陷:可能会使目标文件变大,优势:少了调用开销,提高程序运
行效率。
2. inline对于编译器而言只是一个建议,不同编译器关于inline实现机制可能不同,一般建
议:将函数规模较小(即函数不是很长,具体没有准确的说法,取决于编译器内部实现)、
是递归、且频繁调用
的函数采用inline修饰,否则编译器会忽略inline特性。下图为
《C++prime》第五版关于inline的建议:
C++--入门(内联函数&&auto&&基于范围的for循环&&指针空值nullptr)_第4张图片
 3. inline不建议声明和定义分离,分离会导致链接错误。因为inline被展开,就没有函数地址
了,链接就会找不到.

// F.h
#include 
using namespace std;
inline void f(int i);
// F.cpp
#include "F.h"
void f(int i)
{
	cout << i << endl;
}
// main.cpp
#include "F.h"
int main()
{
	f(10);
	return 0;
}
链接错误:main.obj : error LNK2019: 无法解析的外部符号 "void __cdecl
f(int)" (?f@@YAXH@Z),该符号在函数 _main 中被引用


1.3 面试题 

【面试题】
宏的优缺点?
优点:
1.增强代码的复用性。
2.提高性能。
缺点:
1.不方便调试宏。(因为预编译阶段进行了替换)
2.导致代码可读性差,可维护性差,容易误用。
3.没有类型安全的检查 。
C++有哪些技术替代宏?
1. 常量定义 换用const enum
2. 短小函数定义 换用内联函数
 


 2.auto关键字(C++11)


2.1类型别名思考

随着程序越来越复杂,程序中用到的类型也越来越复杂,经常体现在:
1. 类型难于拼写
2. 含义不明确导致容易出错

 

#include 
#include 
int main()
{
	std::map m{ { "apple", "苹果" }, { "orange",
	"橙子" },
		{ "pear","梨" } };
	std::map::iterator it = m.begin();
	while (it != m.end())
	{
		//....
	}
	return 0;
}

std::map::iterator 是一个类型,但是该类型太长了,特别容
易写错。聪明的同学可能已经想到:可以通过typedef给类型取别名,比如:
 

#include 
#include 
typedef std::map Map;
int main()
{
	Map m{ { "apple", "苹果" },{ "orange", "橙子" }, {"pear","梨"} };
	Map::iterator it = m.begin();
	while (it != m.end())
	{
		//....
	}
	return 0;
}

使用typedef给类型取别名确实可以简化代码,但是typedef有会遇到新的难题:
 

typedef char* pstring;
int main()
{
	const pstring p1; // 编译成功还是失败?
	const pstring* p2; // 编译成功还是失败?
	return 0;
}

在编程时,常常需要把表达式的值赋值给变量,这就要求在声明变量的时候清楚地知道表达式的类型。然而有时候要做到这点并非那么容易,因此C++11给auto赋予了新的含义。
 


2.2auto简介

在早期C/C++中auto的含义是:使用auto修饰的变量,是具有自动存储器的局部变量,但遗憾的是一直没有人去使用它,大家可思考下为什么?
C++11中,标准委员会赋予了auto全新的含义即:auto不再是一个存储类型指示符,而是作为一个新的类型指示符来指示编译器,auto声明的变量必须由编译器在编译时期推导而得。

int TestAuto()
{
	return 10;
}
int main()
{
	int a = 10;
	auto b = a;
	auto c = 'a';
	auto d = TestAuto();
	cout << typeid(b).name() << endl;
	cout << typeid(c).name() << endl;
	cout << typeid(d).name() << endl;
	//auto e; 无法通过编译,使用auto定义变量时必须对其进行初始化
	return 0;
}

【注意】
使用auto定义变量时必须对其进行初始化,在编译阶段编译器需要根据初始化表达式来推导auto的实际类型。因此auto并非是一种“类型”的声明,而是一个类型声明时的“占位符”,编译器在编译期会将auto替换为变量实际的类型。
 


 2.3auto的使用细则

1. auto与指针和引用结合起来使用
用auto声明指针类型时,用auto和auto*没有任何区别,但用auto声明引用类型时则必须
加&
 

int main()
{
	int x = 10;
	auto a = &x;
	auto* b = &x;
	auto& c = x;
	cout << typeid(a).name() << endl;
	cout << typeid(b).name() << endl;
	cout << typeid(c).name() << endl;
	*a = 20;
	*b = 30;
	c = 40;
	return 0;
}

2. 在同一行定义多个变量
当在同一行声明多个变量时,这些变量必须是相同的类型,否则编译器将会报错,因为编译
器实际只对第一个类型进行推导,然后用推导出来的类型定义其他变量。
 

void TestAuto()
{
    auto a = 1, b = 2;
    auto c = 3, d = 4.0; // 该行代码会编译失败,因为c和d的初始化表达式类型不同
}

3.使用场景 

我们在定义简单的类型使用auto的意义是不大的,用在复杂的类型,例如

函数指针上,那就会体现出auto的方便了。

void func(int x, int y)
{

}
int main()
{
	void(*pf1)(int, int) = func;
	auto pf2 = func;
	cout << typeid(pf1).name() << endl;
	cout << typeid(pf2).name() << endl;
}

再如长类型

#include 
#include 
int main()
{
	std::map m{ { "apple", "苹果" }, { "orange",
	"橙子" },
		{ "pear","梨" } };
	std::map::iterator it1 = m.begin();
	auto it2 = m.begin();

	return 0;
}

2.4auto不能推导的场景

1. auto不能作为函数的参数
 

// 此处代码编译失败,auto不能作为形参类型,因为编译器无法对a的实际类型进行推导
void TestAuto(auto a)
{}

2. auto不能直接用来声明数组
 

void TestAuto()
{
    int a[] = {1,2,3};
    auto b[] = {4,5,6};
}

3. 为了避免与C++98中的auto发生混淆,C++11只保留了auto作为类型指示符的用法
4. auto在实际中最常见的优势用法就是跟以后会讲到的C++11提供的新式for循环,还有
lambda表达式等进行配合使用。
 


3.基于范围的for循环(C++11)


3.1 范围for的语法

在C++98中如果要遍历一个数组,可以按照以下方式进行:
 

void Test1For()
{
	int array[] = { 1, 2, 3, 4, 5 };
	for (int i = 0; i < sizeof(array) / sizeof(array[0]); ++i)
		array[i] *= 2;
	for (int* p = array; p < array + sizeof(array) / sizeof(array[0]); ++p)
		cout << *p << endl;
}

对于一个有范围的集合而言,由程序员来说明循环的范围是多余的,有时候还会容易犯错误。因此C++11中引入了基于范围的for循环。for循环后的括号由冒号“ :”分为两部分:第一部分是范围内用于迭代的变量,第二部分则表示被迭代的范围。
这里需要注意一个点,(auto e : array)的意思是将array的值拷贝给e,这不会改变array数组中的值,如果想要改变array数组的值,(auto& e : array)加个引用就可以实际改变array数组的值了。

void Test2For()
{
	int array[] = { 1, 2, 3, 4, 5 };
	for (auto& e : array)
		e *= 2;
	for (auto e : array)
		cout << e << " ";
	
}

注意:与普通循环类似,可以用continue来结束本次循环,也可以用break来跳出整个循环。
 


 3.2范围for的使用条件

1. for循环迭代的范围必须是确定的
对于数组而言,就是数组中第一个元素和最后一个元素的范围;对于类而言,应该提供
begin和end的方法,begin和end就是for循环迭代的范围。
注意:以下代码就有问题,因为for的范围不确定(我们在传数组的时候,因为编译器考虑了效率问题,传递的是指针,这样array的范围就是不确定的了。)

void TestFor(int array[])
{
	for (auto& e : array)
		cout << e << endl;
}

2. 迭代的对象要实现++和==的操作。(关于迭代器这个问题,以后会讲,现在提一下,没办法讲清楚,现在大家了解一下就可以了)
 


 4.指针空值nullptr(C++11)


4.1C++98中的指针空值

在良好的C/C++编程习惯中,声明一个变量时最好给该变量一个合适的初始值,否则可能会出现不可预料的错误,比如未初始化的指针。如果一个指针没有合法的指向,我们基本都是按照如下方式对其进行初始化:
 

void TestPtr()
{
    int* p1 = NULL;
    int* p2 = 0;
    // ……
}

NULL实际是一个宏,在传统的C头文件(stddef.h)中,可以看到如下代码:
 

#ifndef NULL
#ifdef __cplusplus
#define NULL 0
#else
#define NULL ((void *)0)
#endif
#endif

可以看到,NULL可能被定义为字面常量0,或者被定义为无类型指针(void*)的常量。不论采取何种定义,在使用空值的指针时,都不可避免的会遇到一些麻烦,比如:
 

void f(int)
{
    cout<<"f(int)"<

程序本意是想通过f(NULL)调用指针版本的f(int*)函数,但是由于NULL被定义成0,因此与程序的初衷相悖。
 

在C++98中,字面常量0既可以是一个整形数字,也可以是无类型的指针(void*)常量,但是编译器默认情况下将其看成是一个整形常量,如果要将其按照指针方式来使用,必须对其进行强转(void*)0。


注意:
1. 在使用nullptr表示指针空值时,不需要包含头文件,因为nullptr是C++11作为新关键字引入
的。
2. 在C++11中,sizeof(nullptr) 与 sizeof((void*)0)所占的字节数相同。
3. 为了提高代码的健壮性,在后续表示指针空值时建议最好使用nullptr。

接上面代码:

int main()
{
  
    f(nullptr);
    f((int*)NULL);
    return 0;
}


你可能感兴趣的:(C++,c++,开发语言)