内存可存放数据。程序执行前需要先放到内存中才能被CPU处理一一缓和CPU与硬盘之间的速度矛盾
每个小房间就是“存储单元”,如果计算机“按字节编址”,则每个存储单元大小为1字节,即1B,即8个二进制位
如果字长为16位的计算机“按字编址”,则每个存储单元大小为1个字,每个字的大小为16个二进制位
常用的数量单位:
2^10 = 1K (千)
2^20 = 1M (兆,百万)
2^30= 1G (十亿,千兆
红框内为操作指令,有数据传送指令等
可见,我们写的代码要翻译成CPU能识别的指令。这些指令会告诉CPU应该去内存的哪个地址读/写数据,这个数据应该做什么样的处理。在这个例子中,我们默认让这个进程的相关内容从地址0开始连续存放,指令中的地址参数直接给出了变量x的实际存放地址(物理地址)
绝对装入:在编译时,如果知道程序将放到内存中的哪个位置,编译程序将产生绝对地址的目标代码。装入程序按照装入模块中的地址,将程序和数据装入内存。
静态重定位:又称可重定位装入。编译、链接后的装入模块的地址都是从0开始的,指令中使用的地址、数据存放的地址都是相对于起始地址而言的逻辑地址。可根据内存的当前情况,将装入模块装入到内存的适当位置。装入时对地址进行“重定位”,将逻辑地址变换为物理地址(地址变换是在装入时一次完成的)。
静态重定位的特点是在一个作业装入内存时,必须分配其要求的全部内存空间,如果没有足够的内存,就不能装入该作业。
动态重定位:又称动态运行时装入。编译、链接后的装入模块的地址都是从0开始的。装入程序把装入模块装入内存后,并不会立即把逻辑地址转换为物理地址,而是把地址转换推迟到程序真正要执行时才进行。因此装入内存后所有的地址依然是逻辑地址。这种方式需要一个重定位寄存器的支持。
采用动态重定位时允许程序在内存中发生移动。
并且可将程序分配到不连续的存储区中;在程序运行前只需装入它的部分代码即可投入运行,然后在程序运行期间,根据需要动态申请分配内存;便于程序段的共享,可以向用户提供一个比存储空间大得多的地址空间
编译:由编译程序将用户源代码编译成若干个目标模块(编译就是把高级语言翻译为机器语言)
链接:由链接程序将编译后形成的一组目标模块,以及所需库函数链接在一起,形成一个完整的装入模块
装入(装载):由装入程序将装入模块装入内存运行
覆盖技术的思想:将程序分为多个段(多个模块)。常用的段常驻内存,不常用的段在需要时调入内存。
内存中分为一个“固定区”和若干个“覆盖区”。
需要常驻内存的段放在“固定区”中,调入后就不再调出(除非运行结束)
不常用的段放在覆盖区”,需要用到时调入内存,用不到时调出内存
必须由程序员声明覆盖结构,操作系统完成自动覆盖。
缺点:对用户不透明,增加了用户编程负担。
覆盖技术只用于早期的操作系统中,现在已成为历史。
交换(对换)技术的设计思想:内存空间紧张时,系统将内存中某些进程暂时换出外存,把外存中某些己具备运行条件的进程换入内存(进程在内存与磁盘间动态调度)
中级调度(内存调度),就是要决定将哪个处于挂起状态的进程重新调入内存。
暂时换出外存等待的进程状态为挂起状态(挂起态,suspend)挂起态又可以进一步细分为就绪挂起、阻塞挂起两种状态
在单一连续分配方式中,内存被分为系统区和用户区。系统区通常位于内存的低地址部分,用于存放操作系统相关数据;用户区用于存放用户进程相关数据内存中只能有一道用户程序,用户程序独占整个用户区空间。
优点:实现简单;无外部碎片;可以采用覆盖技术扩充内存;不一定需要采取内存保护(eg:早期的PC操作系统MS-D0S)。
缺点:只能用于单用户、单任务的操作系统中;有内部碎片;存储器利用率极低。(分配给某进程的内存区域
中,如果有些部分没有用上,就是“内部碎片”)
20世纪60年代出现了支持多道程序的系统,为了能在内存中装入多道程序,且这些程序之间又不会相互干扰,于是将整个用户空间划分为若干个固定大小的分区,在每个分区中只装入一道作业,这样就形成了最早的、最简单的一种可运行多道程序的内存管理方式。
分区大小相等:缺乏灵活性,但是很适合用于用一台计算机控制多个相同对象的场合(比如:钢铁厂有个相同的炼钢炉,就可把内存分为个大小相等的区域存放n个炼钢炉控制程序)
分区大小不等:增加了灵活性,可以满足不同大小的进程需求。根据常在系统中运行的作业大小情况进行划分(比如:划分多个小分区、适量中等分区、少量大分区)
操作系统需要建立一个数据结构一一分区说明表,来实现各个分区的分配与回收。每个表项对应一个分区,通常按分区大小排列。每个表项包括对应分区的大小、起始地址、状态(是否已分配)。
当某用户程序要装入内存时,由操作系统内核程序根据用户程序大小检索该表,从中找到一个能满足大小的、未分配的分区,将之分配给该程序,然后修改状态为“已分配”
优点:实现简单,无外部碎片。
缺点:a.当用户程序太大时,可能所有的分区都不能满足需求,此时不得不采用覆盖技术来解决,但这又会降低性能:b.会产生内部碎片,内存利用率低。
动态分区分配又称为可变分区分配。这种分配方式不会预先划分内存分区,而是在进程装入内存时,根据进程的大小动态地建立分区,并使分区的大小正好适合进程的需要。因此系统分区的大小和数目是可变的。(eg:假设某计算机内存大小为64MB,系统区8MB,用户区共56MB.…)
动态分区分配又称为可变分区分配。这种分配方式不会预先划分内存分区,而是在进程装入内存时,根据进程的大小动态地建立分区,并使分区的大小正好适合进程的需要。因此系统分区的大小和数目是可变的。
动态分区分配没有内部碎片,但是有外部碎片。
内部碎片,分配给某进程的内存区域中,如果有些部分没有用上。
外部碎片,是指内存中的某些空闲分区由于太小而难以利用。
如果内存中空闲空间的总和本来可以满足某进程的要求,但由于进程需要的是一整块连续的内存空间,因此这些“碎片”不能满足进程的需求。可以通过紧凑(拼凑,Compaction)技术来解决外部碎片。
算法思想:每次都从低地址开始查找,找到第一个能满足大小的空闲分区。
如何实现:空闲分区以地址递增的次序排列。每次分配内存时顺序查找空闲分区链(或空闲分区表),找到大小能满足要求的第一个空闲分区。
算法思想:由于动态分区分配是一种连续分配方式,为各进程分配的空间必须是连续的一整片区域。因此为了保证当“大进程”到来时能有连续的大片空间,可以尽可能多地留下大片的空闲区,即,优先使用更小的空闲区。
如何实现:空闲分区按容量递增次序链接。每次分配内存时顺序查找空闲分区链(或空闲分区表),找到大小能满足要求的第一个空闲分区。
缺点:每次都选最小的分区进行分配,会留下越来越多的、很小的、难以利用的内存块。因此这种方法会产生很多的外部碎片。
又称最大适应算法(Largest Fit)
算法思想:为了解决最佳适应算法的问题一一即留下太多难以利用的小碎片,可以在每次分配时优先使用最大的连续空闲区,这样分配后剩余的空闲区就不会太小,更方便使用。
如何实现:空闲分区按容量递减次序链接。每次分配内存时顺序查找空闲分区链(或空闲分区表),找到大小能满足要求的第一个空闲分区。
缺点:每次都选最大的分区进行分配,虽然可以让分配后留下的空闲区更大,更可用,但是这种方式会导致较大的连续空闲区被迅速用完。如果之后有“大进程”到达,就没有内存分区可用了。
算法思想:首次适应算法每次都从链头开始查找的。这可能会导致低地址部分出现很多小的空闲分区,而每次分配查找时,都要经过这些分区,因此也增加了查找的开销。如果每次都从上次查找结束的位置开始检索,就能解决上述问题。
如何实现:空闲分区以地址递增的顺序排列(可排成一个循环链表)。每次分配内存时从上次查找结束的位置开始查找空闲分区链(或空闲分区表),找到大小能满足要求的第一个空闲分区。
首次适应算法每次都要从头查找,每次都需要检索低地址的小分区。但是这种规则也决定了当低地址部分有更小的分区可以满足需求时,会更有可能用到低地址部分的小分区,也会更有可能把高地址部分的
大分区保留下来(最佳适应算法的优点)
邻近适应算法的规则可能会导致无论低地址、高地址部分的空闲分区都有相同的概率被使用,也就导致了高地址部分的大分区更可能被使用,划分为小分区,最后导致无大分区可用(最大适应算法的缺点)
综合来看,四种算法中,首次适应算法的效果反而更好
将内存空间分为一个个大小相等的分区(比如:每个分区4KB),每个分区就是一个“页框”(页框=页帧=内存块=物理块=物理页面)。每个页框有一个编号,即“页框号”(页框号=页帧号=内存块号=物理块号=物理页号),页框号从0开始。
将进程的逻辑地址空间也分为与页框大小相等的一个个部分,每个部分称为一个“页”或“页面”。每个页面也有一个编号,即“页号”,页号也是从0开始。
Tips:初学易混一一页、页面vs页框、页帧、物理页页号、页面号s页框号、页帧号、物理页号
操作系统以页框为单位为各个进程分配内存空间。进程的每个页面分别放入一个页框中。也就是说,进程的页面与内存的页框有一一对应的关系。
各个页面不必连续存放,可以放到不相邻的各个页框中。
为了能知道进程的每个页面在内存中存放的位置,操作系统要为每个进程建立一张页表。
注:页表通常存在PCB(进程控制块)中
1.一个进程对应一张页表
2.进程的每个页面对应一个页表项
3.每个页表项由“页号”和“块号”组成
4.页表记录进程页面和实际存放的内存块之间的映射关系
Eg:假设某系统物理内存大小为4GB,页面大小为4KB,则每个页表项至少应该为多少字节?
内存块大小=页面大小=4KB=2^12B
→4GB的内存总共会被分为2^32 / 2^12=2^20个内存块
→内存块号的范围应该是0~2^20-1
→内存块号至少要用20bit来表示
→至少要用3B来表示块号(3*8=24bit)
→由于页号是隐含的,因此每个页表项占3B,存储整个页表至少需要 3*(n+1)B
子问题:如何确定一个逻辑地址对应的页号、页内偏移量?
Eg:在某计算机系统中,页面大小是50B。某进程逻辑地址空间大小为200B,则逻辑地址110对应的页号、页内偏移量是多少?
页号 = 逻辑地址 / 页面长度 (取除法的整数部分)
页内偏移量 = 逻辑地址 % 页面长度 (取除法的余数部分)
页号 = 110 / 50 = 2
页内偏移量 = 110 % 50 = 10
逻辑地址可以拆分为(页号,页内偏移量)
通过页号查询页表,可知页面在内存中的起始地址
页面在内存中的起始地址 + 页内偏移量 = 实际的物理地址
结论:如果每个页面大小为 2KB,用二进制数表示逻辑地址则末尾K 位即为页内偏移量,其余部分就是页号
分页存储管理的逻辑地址结构如下所示:
地址结构包含两个部分:前一部分为页号,后一部分为页内偏移量 W。在上图所示的例子中,地址长度为32位,其中0~11位为“页内偏移量”,或称“页内地址”;12~31位为“页号”。
如果有K 位表示“页内偏移量”,则说明该系统中一个页面的大小是 2^k个内存单元
如果有 M 位表示“页号”,则说明在该系统中,一个进程最多允许有 2^M 个页面
页面大小 <--> 页内偏移量位数 -> 逻辑地址结构
Tips:有些奇题目中页面大小有可能不是2的整数次幂,这种情况还是得用最原始的方法计算
页号 = 逻辑地址/页面长度 (取除法的整数部分)
页内偏移量 = 逻辑地址 %页面度(取除法的余数部分)
基本地址变换机构可以借助进程的页表将逻辑地址转换为物理地址。
通常会在系统中设置一个页表寄存器 (PTR),存放页表在内存中的起始地址F 和页表长度M。
进程未执行时,页表的始址 和 页表长度放在进程控制块(PCB)中,当进程被调度时,操作系统内核会把它们放到页表寄存器中。
注意:页面大小是2的整数幂
设页面大小为L,逻辑地址A到物理地址E的变换过程如下:
①根据逻辑地址计算出页号、页内偏移量
②判断页号是否越界
③查询页表,找到页号对应的页表项,确定页面存放的内存块号
④用内存块号和页内偏移量得到物理地址
⑤访问目标内存单元
文字描述:
设页面大小为L,逻辑地址A到物理地址E的变换过程如下(页面大小是2的整数幂):
①计算页号P和页内偏移量W(如果用十进制数手算,则P=A/L,W=A%L;但是在计算机实际运行时,逻辑地址结构是固定不变的,因此计算机硬件可以更快地得到二进制表示的页号、页内偏移量)
②比较页号P和页表长度M,若P≥M,则产生越界中断,否则继续执行。(注意:页号是从0开始的,而页表长度至少是1,因此P=M时也会越界)
③页表中页号P对应的页表项地址=页表起始地址F+页号P*页表项长度,取出该页表项内容b,即为内存块号。(注意区分页表项长度、页表长度、页面大小的区别。页表长度指的是这个页表中总共有几个页表项,即总共有几个页;页表项长度指的是每个页表项占多大的存储空间;页面大小指的是一个页面占多大的存储空间)
④计算E=b*L+W,用得到的物理地址E去访存。(如果内存块号、页面偏移量是用二进制表示的,那么把二者拼接起来就是最终的物理地址了)
例:若页面大小L为1K字节,页号2对应的内存块号b=8,将逻辑地址A=2500转换为物理地址E。(页内偏移量位数与页面大小之间的关系)
等价描述:某系统按字节寻址,逻辑地址结构中,页内偏移量占10位(说明一个页面大小占多少,在这里是2^10B = 1KB),页号2对应的内存块号b=8,将逻辑地址A=2500转换为物理地址E。
解:①计算页号、页内偏移量
页号P=A/L=2500/1024=2;
页内偏移量W=A%L=2500%1024=452
②根据题中条件可知,页号2没有越界,其存放的内存块号b=8
③物理地址E=b*L+W=8*1024+425=8644
在分页存储管理(页式管理)的系统中,只要确定了每个页面的大小,逻辑地址结构就确定了。因此,页式管理中地址是一维的。即,只要给出一个逻辑地址,系统就可以自动地算出页号、页内偏移量两个部分,并不需要显式地告诉系统这个逻辑地址中,页内偏移量占多少位。
每个页表项的长度是相同的,页号是“隐含”的
Eg:假设某系统物理内存大小为4GB,页面大小为4KB,的内存总共会被分为2^32/2^12=2^20个内存块,因此内存块号的范围应该是0~220-1
因此至少要20个二进制位才能表示这么多的内存块号,因此至少要3个字节才够
(每个字节8个二进制位,3个字节共24个二进制位)
各页表项会按顺序连续地存放在内存中,如果该页表在内存中存放的起始地址为X,则M号页对应的页表项是存放在内存地址为X+3*M
一个页面为4KB,则每个页框可以存放4096/3=1365个页表项,但是这个页框会剩余4096%3=1B页内碎片
因此,1365号页表项存放的地址为X+3*1365+1,如果每个页表项占4字节,则每个页框刚好可存放1024个页表项
1024号页表项虽然是存放在下一个页框中的,但是它的地址依然可以用X+4*1024得出
结论:理论上,页表项长度为3B即可表示内存块号的范围,但是,为了方便页表的查询,常常会让一个页表项占更多的字节,使得每个页面恰好可以装得下整数个页表项。
快表,又称联想寄存器(TLB,translation lookaside buffer),是一种访问速度比内存快很多的高速缓存(TLB不是内存!),用来存放最近访问的页表项的副本,可以加速地址变换的速度。与此对应,内存中的页表常称为慢表。
引入快表后,地址的变换过程:
①CPU给出逻辑地址,由某个硬件算得页号、页内偏移量,将页号与快表中的所有页号进行比较。
②如果找到匹配的页号,说明要访问的页表项在快表中有副本,则直接从中取出该页对应的内存块号,再将内存块号与页内偏移量拼接形成物理地址,最后,访问该物理地址对应的内存单元。因此,若快表命中,则访问某个逻辑地址仅需一次访存即可。
③如果没有找到匹配的页号,则需要访问内存中的页表,找到对应页表项,得到页面存放的内存块号,再将内存块号与页内偏移量拼接形成物理地址,最后,访问该物理地址对应的内存单元。因此,若快表未命中,则访问某个逻辑地址需要两次访存(注意:在找到页表项后,应同时将其存入快表,以便后面可能的再次访问。但若快表已满,则必须按照一定的算法对旧的页表项进行替换)
由于查询快表的速度比查询页表的速度快很多,因此只要快表命中,就可以节省很多时间。
因为局部性原理,一般来说快表的命中率可以达到90%以上。
例:某系统使用基本分页存储管理,并采用了具有快表的地址变换机构。访问一次快表耗时1s,访问一次内存耗时100us。若快表的命中率为90%,那么访问一个逻辑地址的平均耗时是多少?
(1+100)*0.9+(1+100+100)*0.1=111us
有的系统支持快表和慢表同时查找,如果是这样,平均耗时应该是(1+100)*0.9+(100+100)*0.1=110.9us
时间局部性:如果执行了程序中的某条指令,那么不久后这条指令很有可能再次执行;如果某个数据被访问过,不久之后该数据很可能再次被访问。(因为程序中存在大量的循环)
空间局部性:一旦程序访问了某个存储单元,在不久之后,其附近的存储单元也很有可能被访问。(因为很多数据在内存中都是连续存放的)
上小节介绍的基本地址变换机构中,每次要访问一个逻辑地址,都需要查询内存中的页表。由于局部性原理,可能连续很多次查到的都是同一个页表项
某计算机系统按字节寻址,支持32位的逻辑地址,采用分页存储管理,页面大小为4KB,页表项长度为4B。
4KB=2^12B,因此页内地址要用12位表示,剩余20位表示页号。
因此,该系统中用户进程最多有2^20页。相应的,一个进程的页表中,最多会有220=1M=1,048,576个页表项,所以一个页表最大需要220*4B=222B,共需要222/212=210个页框存储该页表。
根据页号查询页表的方法:K号页对应的页表项存放位置=页表始址+K*4要在所有的页表项都连续存放的基础上才能用这种方法找到页表项
根据局部性原理可知,很多时候,进程在一段时间内只需要访问某几个页面就可以正常运行了。因此没有必要让整个页表都常驻内存。
问题一:页表必须连续存放,因此当页表很大时,需要占用很多个连续的页框。
问题二:没有必要让整个页表常驻内存,因为进程在一段时间内可能只需要访问某几个特定的页面。
可将长长的页表进行分组,使每个内存块刚好可以放入一个分组(比如上个例子中,页面大小4KB,每个页表项4B,每个页面可存放1K个页表项,因此每1K个连续的页表项为一组,每组刚好占一个内存块,再讲各组离散地放到各个内存块中)
另外,要为离散分配的页表再建立一张页表,称为页目录表,或称外层页表,或称顶层页表
可以在需要访问页面时才把页面调入内存(虚拟存储技术)。可以在页表项中增加一个标志位,用于表示该领面是否已经调入内存
1.若采用多级页表机制,则各级页表的大小不能超过一个页面
例:某系统按字节编址,采用40位逻辑地址,页面大小为4kb,页表项大小为48,假设采用纯页式存储,则要采用()级页表,页内偏移量为()位?
页面大小:4kb-212b,按字节编址,因此页内偏移量为12位
页号40-1228位
页面大小:212b,页表项大小:4b,则每个页面可存放212/4:210个页表项
因此各级页表最多包含20个页表项,需要10位二进制位才能映射到20个页表项,因此每一级的页表对应页号应为10位。总共28位的页号至少要分为三级
如果只分为两级页表,则一级页号占18位,也就是说页目录表中最多可能有2^18个页表项,显然,一个页面是放不下这么多页表项的。
2.两级页表的访存次数分析(假设没有快表机构)
第一次访存:访问内存中的页目录表
第二次访存:访问内存中的二级页表
第三次访存:访问目标内存单元
进程的地址空间:按照程序自身的逻辑关系划分为若干个段,每个段都有一个段名(在低级语言中,程序员使用段名来编程),每段从0开始编址
内存分配规则:以段为单位进行分配,每个段在内存中占据连续空间,但各段之间可以不相邻。
由于是按逻辑功能模块划分,用户编程更方便,程序的可读性更高
LOAD 1,[D]; //将分段D中A单元内的值读入寄存器1
STORE 1,[X]; //将寄存器1的内容存入X分段的B单元中
写程序时使用的段名[D]、[X]会被编译程序翻译成对应段号
分段系统的逻辑地址结构由段号(段名)和段内地址(段内偏移量)所组成。如:
段号的位数决定了每个进程最多可以分几个段
段内地址位数决定了每个段的最大长度是多少
在上述例子中,若系统是按字节寻址的,则
段号占16位,因此在该系统中,每个进程最多有216=64K个段
段内地址占16位,因此每个段的最大长度是216=64KB。
问题:程序分多个段,各段离散地装入内存,为了保证程序能正常运行,就必须能从物理内存中找到各个逻辑段的存放位置。为此,需为每个进程建立一张段映射表,简称“段表”。
①每个段对应一个段表项,其中记录了该段在内存中的起始位置(又称“基址”)和段的长度。
②各个段表项的长度是相同的。例如:某系统按字节寻址,采用分段存储管理,逻辑地址结构为(段号16位,段内地址16位),因此用16位即可表示最大段长。物理内存大小为4GB(可用32位表示整个物理内存地址空间)。因此,可以让每个段表项占16+32=48位,即6B。由于段表项长度相同,因此段号可以是隐含的,不占存储空间。若段表存放的起始地址为M,则K号段对应的段表项存放的地址为M+K*6
页是信息的物理单位。分页的主要目的是为了实现离散分配,提高内存利用率。分页仅仅是系统管理上的需要,完全是系统行为,对用户是不可见的。
段是信息的逻辑单位。分段的主要目的是更好地满足用户需求。一个段通常包含着一组属于一个逻辑模块的信息。分段对用户是可见的,用户编程时需要显式地给出段名。
页的大小固定且由系统决定。段的长度却不固定,决定于用户编写的程序。
分页的用户进程地址空间是一维的,程序员只需给出一个记忆符即可表示一个地址。
分段的用户进程地址空间是二维的,程序员在标识一个地址时,既要给出段名,也要给出段内地址。
分段比分页更容易实现信息的共享和保护
不能被修改的代码称为纯代码或可重入代码(不属于临界资源),这样的代码是可以共享的。可修改的代码是不能共享的(比如,有一个代码段中有很多变量,各进程并发地同时访问可能造成数据不一致)
分段比分页更容易实现信息的共享和保护。
不能被修改的代码称为纯代码或可重入代码(不属于临界资源),这样的代码是可以共享的。可修改的代码是不能共享的
访问一个逻辑地址需要几次访存?
分页(单级页表):第一次访存一一查内存中的页表,第二次访存一一访问目标内存单元。总共两次访存
分段:第一次访存一一查内存中的段表,第二次访存一一访问目标内存单元。总共两次访存
与分页系统类似,分段系统中也可以引入快表机构,将近期访问过的段表项放到快表中,这样可以少一次访问,加快地址变换速度。
分段管理需要在内存中连续存放,但是可以用“紧凑”来解决,只是需要付出较大的时间代价
将进程按逻辑模块分段,再将各段分页(如每个页面4KB
再将内存空间分为大小相同的内存块/页框/页帧/物理块
进程前将各页面分别装入各内存块中
分段”对用是可见的,程序员编程时需要显式地给出段号、段内地址。而将各段“分页”对用户是不可见的。系统会根据段内地址自动划分页号和页内偏移量,因此段页式管理的地址结构是二维的
段号的位数决定了每个进程最多可以分几个段
页号位数决定了每个段最大有多少页
页内偏移量决定了页面大小、内存块大小是多少
在上述例子中,若系统是按字节寻址的,则
段号占16位,因此在该系统中,每个进程最多有216=64K个段
页号占4位,因此每个段最多有24=16页
页内偏移量占12位,因此每个页面每个内存块大小为212=4096=4KB
每个段对应一个段表项,每个段表项由段号、页表长度、页表存放块号(页表起始地址)组成。每个段表项长度相等,段号是隐含的。
每个页面对应一个页表项,每个页表项由页号、页面存放的内存块号组成。每个页表项长度相等,页号是隐含的。
一个进程只会对应一个段表,但每个段会对应一个页表,因此一个进程会对应多个页表
也可引入快表机构,用段号和页号作为查询快表的关键字。若快表命中则仅需一次访存
时间局部性:如果执行了程序中的某条指令,那么不久后这条指令很有可能再次执行;如果某个数据被访问过,不久之后该数据很可能再次被访问。(因为程序中存在大量的循环)
空间局部性:一旦程序访问了某个存储单元,在不久之后,其附近的存储单元也很有可能被访问。(因为很多数据在内存中都是连续存放的,并且程序的指令也是顺序地在内存中存放的)
基于局部性原理,在程序装入时,可以将程序中很快会用到的部分装入内存,暂时用不到的部分留在外存,就可以让程序开始执行在程序执行过程中,当所访问的信息不在内存时,由
操作系统负责将所需信息从外存调入内存,然后继续执行程序
若内存空间不够,由操作系统负责将内存中暂时用不到的信息换出到外存
在操作系统的管理下,在用户看来似乎有一个比实际内存大得多的内存,这就是虚拟内存
虚拟内存有一下三个主要特征:
虚拟内存技术,允许一个作业分多次调入内存。如果采用连续分配方式,会不方便实现。因此,虚拟内存的实现需要建立在离散分配的内存管理方式基础上。
主要区别:
在程序执行过程中,当所访问的信息不在内存时,由操作系统负责将所需信息从外存调入内,然后继续执行程序。操作系统要提供请求调页(或请求调段)功能
若内存空间不够,由操作系统负责将内存中暂时用不到的信息换出到外存。操作系统要提供页面置换(或段置换)的功能
请求分页存储管理与基本分页存储管理的主要区别:在程序执行过程中,当所访问的信息不在内存时,由操作系统负责将所需信息从外存调入内存,然后继续执行程序。
若内存空间不够,由操作系统负责将内存中暂时用不到的信息换出到外存。
与基本分页管理相比,请求分页管理中,为了实现“请求调页”,操作系统需要知道每个页面是否已经调入内存:如果还没调入,那么也需要知道该页面在外存中存放的位置。
当内存空间不够时,要实现“页面置换”,操作系统需要通过某些指标来决定到底换出哪个页面:有的页面没有被修改过,就不用再浪费时间写回外存。有的页面修改过,就需要将外存中的旧数据覆盖,因此,操作系统也需要记录各个页面是否被修改的信息
假设此时要访问逻辑地址=(页号,页内偏移量)=(0,1024)
在请求分页系统中,每当要访问的页面不在内存时,便产生一个缺页中断,然后由操作系统的缺页中断处理程序处理中断。
此时缺页的进程阻塞,放入阻塞队列,调页完成后再将其唤醒,放回就绪队列。
如果内存中有空闲块,则为进程分配一个空闲块,将所缺页面装入该块,并修改页表中相应的页表项。
如果内存中没有空闲块,则由页面置换算法选择一个页面淘汰,若该页面在内存期间被修改过,则要将其写回外存。未修改过的页面不用写回外存。
缺页中断是因为当前执行的指令想要访问的目标页面未调入内存而产生的,因此属于内中断
一条指令在执行期间,可能产生多次缺页中断。(如:copy A to B,即将逻辑地址A中的数据复制到逻辑地址B,而A、B属于不同的页面,则有可能产生两次中断)
新增步骤1:请求调页(查到页表项时进行判断)
新增步骤2:页面置换(需要调入页面,但没有空闲内存块时进行)
新增步骤3:需要修改请求页表中新增的表项
补充细节:
①只有“写指令”才需要修改“修改位”。并且,一般来说只需修改快表中的数据,只有要将快表项删除时才需要写回内存中的慢表。这样可以减少访存次数
②和普通的中断处理一样,缺页中断处理依然需要保留CPU现场。
③需要用某种“页面置换算法”来决定一个换出页面(下节内容)
④换入I/O换出页面都需要启动慢速的I/O操作,可见,如果换入换出太频繁,会有很大的开销。
⑤页面调入内存后,需要修改慢表,同时也需要将表项复制到快表中。
页面的换入、换出需要磁盘I/O,会有较大的开销,因此好的页面置换算法应该追求更少的缺页率
最佳置换算法(OPT,Optimal):每次选择淘汰的页面将是以后永不使用,或者在最长时间内不再被访问的页面,这样可以保证最低的缺页率。
例:假设系统为某进程分配了三个内存块,并考虑到有一下页面号引用串(会依次访问这些页面):
7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1
整个过程缺页中断发生了9次,页面置换发生了6次。
注意:缺页时未必发生页面置换。若还有可用的空闲内存块,就不用进行页面置换。
缺页率=9/20=45%
最佳置换算法可以保证最低的缺页率,但实际上,只有在进程执行的过程中才能知道接下来会访问到的是哪个页面。操作系统无法提前预判页面访问序列。因此,最佳置换算法是无法实现的。
先进先出置换算法(IFO):每次选择淘汰的页面是最早进入内存的页面
实现方法:把调入内存的页面根据调入的先后顺序排成一个队列,需要换出页面时选择队头页面即可。队列的最大长度取决于系统为进程分配了多少个内存块。
例:假设系统为某进程分配了三个内存块,并考虑到有以下页面号引用串:
3,2,1,0,3,2,4,3,2,1,0,4
Belady异常一一当为进程分配的物理块数增大时,缺页次数不减反增的异常现象。
只有FIFO算法会产生Belady异常。另外,FIFO算法虽然实现简单,但是该算法与进程实际运行时的规律不适应,因为先进入的页面也有可能最经常被访问。因此,算法性能差
最近最久未使用置换算法(LRU,least recently used):每次淘汰的页面是最近最久未使用的页面
实现方法:赋予每个页面对应的页表项中,用访问字段记录该页面自上次被访问以来所经历的时间t。当需要淘汰一个页面时,选择现有页面中t值最大的,即最近最久未使用的页面。
例:假设系统为某进程分配了四个内存块,并考虑到有以下页面号引用串:
1,8,1,7,8,2,7,2,1,8,3,8,2,1,3,1,7,1,3,7
在手动做题时,若需要淘汰页面,可以逆向检查此时在内存中的几个页面号。在逆向扫描过程中最后一个出现的页号就是要淘汰的页面。
该算法的实现需要专门的硬件支持,虽然算法性能好但是实现困难,开销大
最佳置换算法性能最好,但无法实现:先进先出置换算法实现简单,但算法性能差;最近最久未使用置换算法性能好,是最接近OPT算法性能的,但是实现起来需要专门的硬件支持,算法开销大。
时钟置换算法是一种性能和开销较均衡的算法,又称CLOCK算法,或最近未用算法(NRU,Not Recently Used
简单的CLOCK算法实现方法:为每个页面设置一个访问位,再将内存中的页面都通过链接指针链接成一个循环队列。当某页被访问时,其访问位置为1。当需要淘汰一个页面时,只需检查页的访问位。如果是0,就选择该页换出;如果是1,则将它置为0,暂不换出,继续检查下一个页面,若第一轮扫描中所有页面都是1,则将这些页面的访问位依次置为0后,再进行第二轮扫描(第二轮扫描中一定会有访问位为0的页面,因此简单的CLOCK算法选择一个淘汰页面最多会经过两轮扫描)
例:假设系统为某进程分配了五个内存块,并考虑到有以下页面号引用串:
1,3,4,2,5,6,3,4,7
简单的时钟置换算法仅考虑到一个页面最近是否被访问过。事实上,如果被淘汰的页面没有被修改过,就不需要执行/O操作写回外存。只有被淘汰的页面被修改过时,才需要写回外存。
因此,除了考虑一个页面最近有没有被访问过之外,操作系统还应考虑页面有没有被修改过。在其他条件都相同时,应优先淘汰没有修改过的页面,避免I/O操作。这就是改进型的时钟置换算法的思想。
修改位=0,表示页面没有被修改过;修改位=1,表示页面被修改过。
为方便讨论,用(访问位,修改位)的形式表示各页面状态。如(1,1)表示一个页面近期被访问过,且被修改过。
由于第二轮已将所有帧的访问位设为0,因此经过第三轮、第四轮扫描一定会有一个帧被选中,因此改进型CLOCK置换算法选择一个淘汰页面最多会进行四轮扫描
驻留集:指请求分页存储管理中给进程分配的物理块的集合。
在采用了虚拟存储技术的系统中,驻留集大小一般小于进程的总大小。
考虑一个极端情况,若某进程共有100个页面,则该进程的驻留集大小为100时进程可以全部放入内存,运行期间不可能再发生缺页。若驻留集大小为1,则进程运行期间必定会极频繁地缺页
若驻留集太小,会导致缺页频繁,系统要花大量的时间来处理缺页,实际用于进程推进的时间很少;
驻留集太大,又会导致多道程序并发度下降,资源利用率降低。所以应该选择一个合适的驻留集大小。
分配策略:
置换策略:
系统为每个进程分配一定数量的物理块,在整个运行期间都不改变。若进程在运行中发生缺页,则只能从该进程在内存中的页面中选出一页换出,然后再调入需要的页面。这种策略的缺点是:很难在刚开始就确定应为每个进程分配多少个物理块才算合理。(采用这种策略的系统可以根据进程大小、优先级、或是根据程序员给出的参数来确定为一个进程分配的内存块数)
刚开始会为每个进程分配一定数量的物理块。操作系统会保持一个空闲物理块队列。当某进程发生缺页时,从空闲物理块中取出一块分配给该进程;若已无空闲物理块,则可选择一个未锁定的页面换出外存,再将该物理块分配给缺页的进程。采用这种策略时,只要某进程发生缺页,都将获得新的物理块,仅当空闲物理块用完时,系统才选择一个未锁定的页面调出。被选择调出的页可能是系统中任何一个进程中的页,因此这个被选中的进程拥有的物理块会减少,缺页率会增加。
可变分配局部置换:刚开始会为每个进程分配一定数量的物理块。当某进程发生缺页时,只允许从该进程自己的物理块中选出一个进行换出外存。如果进程在运行中频繁地缺页,系统会为该进程多分配几个物理块,直至该进程缺页率趋势适当程度;反之,如果进程在运行中缺页率特别低,则可适当减少分配给该进程的物理块。
可变分配全局置换:只要缺页就给分配新物理块
可变分配局部置换:要根据发生缺页的频率来动态地增加或减少进程的物理块
刚刚换出的页面马上又要换入内存,刚刚换入的页面马上又要换出外存,这种频繁的页面调度行为称为抖动,或颠簸。产生抖动的主要原因是进程频繁访问的页面数目高于可用的物理块数(分配给进程的物理块不够)
为进程分配的物理块太少,会使进程发生抖动现象。为进程分配的物理块太多,又会降低系统整体的并发度,降低某些资源的利用率
驻留集:指请求分页存储管理中给进程分配的内存块的集合。
工作集:指在某段时间间隔里,进程实际访问页面的集合。
操作系统会根据“窗口尺寸”来算出工作集。例:某进程的页面访问序列如下,窗口尺寸为4,各时刻的工作集为?
工作集大小可能小于窗口尺寸,实际应用中,操作系统可以统计进程的工作集大小,根据工作集大小给进程分配若干内存块。如:窗口尺寸为5,经过一段时间的监测发现某进程的工作集最大为3,那么说明该进程有很好的局部性,可以给这个进程分配3个以上的内存块即可满足进程的运行需要。
一般来说,驻留集大小不能小于工作集大小,否则进程运行过程中将频繁缺页。
拓展:基于局部性原理可知,进程在一段时间内访问的页面与不久之后会访问的页面是有相关性的。因此,可以根据进程近期访问的页面集合(工作集)来设计一种页面置换算法一一选择一个不在工作集中的页面进行淘汰。
内存映射文件一一操作系统向上层程序员提供的功能(系统调用)