- 使用opencv实现深度学习的图片与视频的超分辨率
人工智能研究所
人工智能之计算机视觉opencv深度学习视频超分辨率图片超分辨率
图片超分辨率什么是视频与图片的超分辨率,总结一下便是给一张分辨率比较低的图片,进行超分辨率的处理后,生成比较清晰的高分辨率的图片,上图图片完美解释了超分辨率的过程,由于不同的算法不同,处理的结果也不相同,本期我们介绍一下如何进行图片的超分辨率的处理。·EDSR模型图像超分辨率EDSR:EnhancedDeepResidualNetworksforSingleImageSuper-Resolutio
- OpenCV 简介
奇点创客
OpenCV
OpenCV(OpenSourceComputerVisionLibrary,开源计算机视觉库:http://opencv.org)是一个开放源代码库,其中包含数百种计算机视觉算法。本文档介绍所谓的OpenCV2.xAPI,与基于C的OpenCV1.xAPI相比,该API本质上是一套C++API(自OpenCV2.4发行以来,不推荐再使用CAPI,并且不使用“C”编译器进行测试)。OpenCV具有
- OpenCV机器学习(1)人工神经网络 - 多层感知器类cv::ml::ANN_MLP
村北头的码农
OpenCVopencv机器学习人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述cv::ml::ANN_MLP是OpenCV库中的一部分,用于实现人工神经网络-多层感知器(ArtificialNeuralNetwork-Multi-LayerPerceptron,ANN-MLP)。它提供了一种方式来创建和训练多层感知器模型,以解决分类、回归等
- GUROBI之如何快速定位模型infeasible的原因
吃面包的快乐小狗
python数学建模
今天在用GUROBI写EVRPTW问题的模型时,遇到了很多问题参考:github上的一个用cplex来求解的paper:TheElectricVehicle-RoutingProblemwithTimeWindowsandRechargingStations(informs.org)code:E-VRPTW/E-VRPTW.modatmain·jmanzolli/E-VRPTW(github.co
- [C#]C#使用yolov8的目标检测tensorrt模型+bytetrack实现目标追踪
FL1623863129
深度学习c#YOLO目标检测
【测试通过环境】win10x64vs2019cuda11.7+cudnn8.8.0TensorRT-8.6.1.6opencvsharp==4.9.0.NETFramework4.7.2NVIDIAGeForceRTX2070Super版本和上述环境版本不一样的需要重新编译TensorRtExtern.dll,TensorRtExtern源码地址:TensorRT-CSharp-API/src/T
- Docker-快速入门
学习两年半的Javaer
dockerdocker容器
1.部署MySQL首先,我们利用Docker来安装一个MySQL软件,大家可以对比一下之前传统的安装方式,看看哪个效率更高一些。如果是利用传统方式部署MySQL,大概的步骤有:搜索并下载MySQL安装包上传至Linux环境编译和配置环境安装而使用Docker安装,仅仅需要一步即可,在命令行输入下面的命令(建议采用CV大法):dockerrun-d\--namemysql\-p3306:3306\-
- 第二章:12.3 建立表现基准
望云山190
基准性能水平人工智能机器学习
背景介绍语音识别是一种常见的机器学习应用,用户通过语音输入代替键盘输入,系统需要将语音转换为文本。在这个过程中,算法的性能可以通过训练误差和交叉验证误差来评估。误差定义训练误差(Jtrain):指算法在训练数据集上无法正确转录的音频片段的百分比。在这个例子中,训练误差是10.8%,意味着算法在训练数据上犯了10.8%的错误。交叉验证误差(Jcv):指算法在未见过的数据(交叉验证集)上无法正确转录的
- 第二章:12.4 学习曲线
望云山190
深度学习机器学习人工智能
学习曲线的基本概念学习曲线是展示机器学习模型性能如何随着训练数据量增加而变化的图表。它们可以帮助我们理解模型在不同数据量下的表现,以及模型是否过拟合或欠拟合。二阶模型的学习曲线交叉验证错误(Jcv):这条绿色曲线表示模型在未见过的数据上的表现。它反映了模型的泛化能力,即模型对新数据的预测能力。训练错误(Jtrain):这条红色曲线表示模型在训练数据上的表现。它反映了模型对训练数据的拟合程度。学习曲
- 树莓派通过手机热点,无线连接PC端电脑,进行远程操作
Epiphany_ZZW
树莓派智能手机
树莓派通过手机热点实现无线连接具有以下几点优势:1.该方式能够联网,方便在项目开发时下载一些数据包。2.该方式能够通过手机端查看树莓派IP地址(有些情况树莓派ip地址会发生改变)借鉴链接如下:树莓派的使用网线及无线连接方法及手机连接树莓派_opencv镜像具体操作方式如下:打开终端:pi@raspberrypi:~$sudonano/etc/wpa_supplicant/wpa_supplican
- 推荐学习图像处理的入门书:《Python图像处理实战》
天飓
学习感悟学习图像处理python
《Python图像处理实战》是一本全面介绍Python图像处理技术的实用指南,是由人民邮电出版社于2020年12月出版。这本书的作者桑迪潘·戴伊是一位兴趣广泛的数据科学家,主要研究机器学习、深度学习、图像处理和计算机视觉。在《Python图像处理实战》一书中,作者主要介绍了如何用Python图像处理库(如PIL、python-opencv、Scipy等),机器学习库(scikit-learn)和深
- Springboot中添加原生websocket支持
小的~~
springbootwebsocketjava
1、添加配置@Configuration@EnableWebSocketpublicclassWebSocketConfigimplementsWebSocketConfigurer{@OverridepublicvoidregisterWebSocketHandlers(WebSocketHandlerRegistryregistry){//注册WebSocket处理器,并允许所有来源的连接(在
- 使用 OpenCV 和 Python 对图像进行卡通化
无水先生
AI原理和python实现人工智能综合opencvpython人工智能
关键词:OpenCVlibrarytoconvertimagestocartoons目录一、说明二、OpenCV2.1要求支持库2.2方法2.3实施和执行三、定义卡通化函数3.1添加按钮3.2保存图像四、结论一、说明在本文中,我们将构建一个有趣的应用程序,将提供给它的图像卡通化。为了构建这个卡通化应用程序,我们将使用python和OpenCV。这是机器学习令人兴奋和激动的应用程序之一。在构建此应用
- 使用Qt+opencv实现游戏辅助点击工具-以阴阳师为例
虎式坦克我最爱
游戏
注:本文章技术交流使用,不侵犯任何著作权。一.阴阳师辅助软件需要实现哪些功能?1.首先,对于肝绘卷拿角色而言,需要打困难28副本和结界突破循环刷绘卷碎片。这一功能让你每月免费悠闲地拿到最新角色,即使你是较新的玩家!2.有人喜欢打阴阳寮突破,因为结界卡可以合成勾玉,另外寮突破后给的寮勋章可以维持寮正常运转。3.御魂等副本,这款游戏的御魂是核心玩法。而且这只是一个辅助工具,不修改游戏内存,用来解放双手
- 用 Python 实现基于特质波动率的量化投资策略
机器懒得学习
人工智能大数据
在量化投资中,如何构建有效的投资组合是一个关键问题。特质波动率(IdiosyncraticVolatility,简称IV)作为衡量股票独特风险的指标,受到了越来越多的关注。基于特质波动率的投资策略,通过剔除市场风险,专注于每只股票独立的风险特征,有助于构建更精确的投资组合。本篇博客将介绍如何使用Python实现基于特质波动率的量化投资策略,包括数据获取、因子计算、投资组合构建以及绩效分析等重要环节
- ORB-SLAM3源码的学习:GeometricTools文件
PaLu-LvL
计算机视觉#ORB-SLAM3c++计算机视觉ubuntu人工智能学习
前言GeometricTools提供了两种几何计算功能:1.计算两个关键帧之间的基础矩阵、2.通过三角化算法从两个视角恢复三维点。这部分功能在ORB-SLAM2中就已经介绍过了,这里不过多赘述。1.头文件GeometricTools.h除了计算基础矩阵和三角化恢复三维点外,头文件中还提供了两种用于比较矩阵的模板函数。第一个函数用于比较一个OpenCV矩阵和一个Eigen矩阵,第二个函数用于比较两个
- ORB-SLAM3的源码学习: Settings.cc:Settings::readImageInfo读取图像信息
PaLu-LvL
计算机视觉#ORB-SLAM3计算机视觉opencvubuntuc++人工智能学习
前言简单总结一下:这个函数的主要目的是从配置文件中读取和设置与相机图像尺寸相关的各种参数。它会根据需要调整图像的宽度和高度,并根据这些调整更新相机的校准参数。如果是立体相机或带IMU的相机,还会同时更新第二个相机的校准参数。最终,这些调整确保图像和相机校准信息的一致性。1.函数声明voidSettings::readImageInfo(cv::FileStorage&fSettings)2.函数定
- 如何优化产品版本管理流程?全面指南
项目管理
产品版本管理流程是现代软件开发中不可或缺的重要环节,它直接影响着产品的质量、开发效率和用户体验。优化这一流程不仅能够提高团队协作效率,还能确保产品的稳定性和可靠性。本文将深入探讨如何优化产品版本管理流程,为您提供全面的指导。版本管理策略的制定制定清晰的版本管理策略是优化产品版本管理流程的基础。这包括确定版本号命名规则、发布周期和分支管理策略。采用语义化版本控制(SemanticVersioning
- ORB-SLAM3的源码学习: Settings.cc:Settings::readCamera1/readCamera2 从配置文件中加载相机参数
PaLu-LvL
计算机视觉#ORB-SLAM3计算机视觉ubuntuopencv人工智能数码相机学习
前言需要从配置文件yaml文件中读取相机参数才能用于后续计算。1.函数声明读取相机1的参数:voidSettings::readCamera1(cv::FileStorage&fSettings)如果是双目相机则还要读取相机2的参数:voidSettings::readCamera2(cv::FileStorage&fSettings)2.函数定义相机11.读取相机模型3的模型加入了针孔相机模型以
- 【深度学习】计算机视觉(CV)-图像分类-ResNet(Residual Network,残差网络)
IT古董
深度学习人工智能深度学习计算机视觉分类
ResNet(ResidualNetwork,残差网络)是一种深度卷积神经网络(CNN)架构,由何恺明(KaimingHe)等人在2015年提出,最初用于ImageNet竞赛,并在分类任务上取得了冠军。ResNet的核心思想是残差学习(ResidualLearning),它通过跳跃连接(SkipConnections)解决了深度神经网络训练中的梯度消失和梯度爆炸问题,使得非常深的网络(如50层、1
- 《深入浅出LLM基础篇》(三):大模型结构分类
GoAI
深入浅出LLM深入浅出AI自然语言处理NLP大模型LLM人工智能transformerchatgpt
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介
- 用python写一个聊天室程序
酷爱码
Pythonpython服务器网络
下面是一个简单的基于Socket的Python聊天室程序示例,包括服务器端和客户端:服务器端代码:importsocketimportthreadingdefhandle_client(client,address):print(f"Newconnectionfrom{address}")whileTrue:msg=client.recv(1024).decode()ifnotmsg:breakp
- OpenCV:人脸检测与Haar级联分类器(十三)
WHCIS
opencvopencv数学建模人工智能计算机视觉音视频算法
一、Haar级联检测深度解析1.1Haar特征数学建模Haar特征的本质是通过矩形区域对比捕捉局部特征,其数学形式可扩展为四元组表示:特征定义:Haar(f)=(t,x,y,w,h)×s\text{Haar}(f)=(t,x,y,w,h)\timessHaar(f)=(t,x,y,w,h)×s其中:ttt表示特征类型(共14种基础变体)(x,y)(x,y)(x,y)为特征锚点坐标(w,h)(w,h
- 多线程异步执行,等待执行全部执行完成后,返回全部结果 CompletableFuture和Future以及CountDownLatch 使用
知道的越多越难受
javajavajvmservlet
需求:需要异步执行多个任务,获取每个任务的结果。根据任务结果判断是否继续后面的操作//存储全部任务返回结果集合publicstaticvoidmain(String[]args){Listobjects=Collections.synchronizedList(newArrayList{try{Thread.sleep(1000);}catch(InterruptedExceptione){e.p
- Linux下使用poll函数编写UDP客户端、服务器程序
崔杰城
linuxudp网络协议网络
一、UDP服务器与客户端的区别对于UDP服务器与客户端,两者都可以通过sendto和recvfrom函数收发数据,它们的主要区别是:1.服务器一般是等待并响应来自客户端的请求,客户端则是主动发送请求并且等待服务器的响应。2.服务器端要将地址和端口号绑定,如果不绑定就无法使用recvfrom函数接受数据(也就是说服务器需要调用bind函数将一个套接字与一个地址绑定,而客户端不需要)。所以对于UDP,
- QRCode二维码相关资料
程序员琛琛
java面试java
QRCode二维码相关资料链接:https://pan.baidu.com/s/1GBphCLeiz4u4cv-668d-FA提取码:gcep
- Python 爬虫验证码识别
acheding
pythonpython爬虫ocr
在我们进行爬虫的过程中,经常会碰到有些网站会时不时弹出来验证码识别。我们该如何解决呢?这里分享2种我尝试过的方法。0.验证码示例1.OpenCV+pytesseract使用Python中的OpenCV库进行图像预处理(边缘保留滤波、灰度化、二值化、形态学操作和逻辑运算),然后结合pytesseract进行文字识别。pytesseract需要配合安装在本地的tesseract-ocr.exe文件一起
- Run-On-Arch GitHub Action:跨架构CI/CD的利器
怀创宪
Run-On-ArchGitHubAction:跨架构CI/CD的利器run-on-arch-actionAGithubActionthatexecutesjobs/commandsonnon-x86cpuarchitectures(ARMv6,ARMv7,aarch64,s390x,ppc64le,riscv64)viaQEMU项目地址:https://gitcode.com/gh_mirror
- MobileNetV4(2024 ECCV)
刘若里
论文阅读学习网络计算机视觉笔记
论文标题MobileNetV4:UniversalModelsfortheMobileEcosystem论文作者DanfengQin,ChasLeichner,ManolisDelakis,MarcoFornoni,ShixinLuo,FanYang,WeijunWang,ColbyBanbury,ChengxiYe,BerkinAkin,VaibhavAggarwal,TenghuiZhu,Da
- 《深入浅出多模态》 (五):多模态经典模型ALBEF
GoAI
深入浅出多模态多模态大模型LLM深度学习人工智能
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介绍:</
- 字符串相似度算法
S Y H
java工具类算法java开发语言
publicstaticvoidmain(String[]args){Stringaddress1="济南市历下区经十路69号12号楼1单元401号";Stringaddress2="济南市历下区经十路69号顺元街道12号楼1单元401号";intdistance=levenshteinDistance(address1,address2);System.out.println("Levensht
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,Django@Python2.x 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f