使用yolov5-5.0版本,导出时修改了yolo.py文件中的forward如下,opset设置12可是推理结果完全不对,请大佬解惑。
def forward(self, x): z = [] # inference output for i in range(self.nl): x[i] = self.m[i](x[i]) # conv # bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) # x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() # # if not self.training: # inference # if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]: # self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i) # # y = x[i].sigmoid() # if self.inplace: # y[..., 0:2] = (y[..., 0:2] * 2 + self.grid[i]) * self.stride[i] # xy # y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh # else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953 # xy, wh, conf = y.split((2, 2, self.nc + 1), 4) # y.tensor_split((2, 4, 5), 4) # torch 1.8.0 # xy = (xy * 2 + self.grid[i]) * self.stride[i] # xy # wh = (wh * 2) ** 2 * self.anchor_grid[i] # wh # y = torch.cat((xy, wh, conf), 4) # z.append(y.view(bs, -1, self.no)) return x #if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)