- 【LlamaIndex核心组件指南 | 模型篇】一文通晓 LlamaIndex 模型层:LLM、Embedding 及多模态应用全景解析
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- Prompt Engineering for Large Language Models
三月七꧁ ꧂
论文合集llm+promptprompt语言模型人工智能自然语言处理pdfjavascript前端
题目大型语言模型的快速工程简介 随着OpenAI的ChatGPT和Google的Bard等软件的普及,大语言模型(LLM)已经渗透到生活和工作的许多方面。例如,ChatGPT可用于提供定制食谱,建议替换缺失的成分。它可用于起草研究提案、用多种编程语言编写工作代码、在语言之间翻译文本、协助政策制定等等(Gao2023)。用户通过“提示”或自然语言指令与大型语言模型进行交互。精心设计的提示可以带
- “自动化失败归因”测试集-Who&When
liliangcsdn
自动化人工智能语言模型
在MAS(Multi-Agent系统)中,Agent之间自主协作、信息链条长,异常常见而且诊断困难。Who&When就是测者MAS系统异常诊断的benchmark。Who&When的prompt问题来源于GAIAandAssistantBench,包含了127个LLMMulti-Agent系统中收集的异常日志,并经过系统和人工处理。Who&When样本配有如下所示的细粒度标注:“谁”(Who):哪
- 提示词编程语言设计艺术探索
AI天才研究院
计算AI人工智能与大数据AI大模型企业级应用开发实战javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《提示词编程语言设计艺术探索》关键词:提示词编程语言,设计艺术,编程语言设计,核心算法,实例分析,项目实战摘要:本文旨在深入探讨提示词编程语言的设计艺术,从基础概念到核心算法,再到实际应用和未来趋势,全面解析这一领域的关键技术和设计理念。通过具体的实例分析和项目实战,帮助读者更好地理解和掌握提示词编程语言的设计与实现。引言与概述1.1提示词编程语言的背景和重要性提示词编程语言(Prompt-Bas
- 微软全新开源的Agentic Web网络项目:NLWeb详解
kevin luan
AI工作流编程microsoft前端网络
引言在2025年5月的MicrosoftBuild开发者大会上,微软推出了一个全新的开源项目——NLWeb(NaturalLanguageWeb,自然语言网络),被誉为“AgenticWeb(代理网络)”的基石,目标是将传统网页转变为支持自然语言交互的智能AI应用。微软将其比作Web时代的HTML,旨在通过简单的方式为网站添加对话式AI接口,让用户和AI代理能够以自然语言直接查询和交互网站内容。本
- 16.2 Docker多阶段构建实战:LanguageMentor镜像瘦身40%,支持500+并发1.2秒响应!
少林码僧
dockerlangchainwindows人工智能语言模型llama运维
LanguageMentorAgent容器化部署与发布:Docker镜像创建与测试关键词:Docker容器化部署,多阶段构建,镜像分层优化,环境一致性,私有化模型集成1.Dockerfile最佳实践架构设计通过多阶段构建策略实现开发与生产环境分离:
- 基于OpenCV-python的人脸识别系统
transuperb
完整代码opencvpython人工智能
importsysimportosimporttkinterastkfromtkinter.ttkimportStyleimportnumpyasnpimportcv2fromPILimportImageTk,ImageDraw,ImageFontfrompanel.models.tabulatorimportthemefromModelimport*fromtkinterimportttk,fi
- 二十九:Dynamic Prompts插件动态提示词讲解
DarkQE
stablediffusion0基础学习stablediffusion
引言:可变化提示词,随机抽取不固定使用方式一:{提示词1|提示词2|。。。。}------从提示词种随机抽取生成方式二:{25::提示词1|75::提示词2}------数字为每个提示词的占比,相当于权重方式三:{2$$提示词1|提示词2|提示词3|提示词4|。。。}从中选区2个搭配生成(可以换比如2-3意思为两到三个搭配组合生成)
- 【大模型学习 | LORA 原理及实现】
九年义务漏网鲨鱼
语言模型pythonpytorch自然语言处理
LORA:LOW-RANKADAPTATIONOFLARGELAN-GUAGEMODELSGithub库:GitHub-microsoft/LoRA:Codeforloralib,animplementationof“LoRA:Low-RankAdaptationofLargeLanguageModels”GPT-3:175B微调模型变得十分的贵。作者提出利用Low-RankAdaption来冻结
- Prism框架实战:WPF企业级开发全解
待香港下雪就不用敲代码了
wpfc#visualstudio开发语言
以下是一个完整的WPF项目示例,使用Prism框架实现依赖注入、导航、复合命令、模块化和聚合事件功能。项目结构清晰,包含核心功能实现:项目结构PrismDemoApp/├──PrismDemoApp(主项目)│├──Views/││├──ShellView.xaml││├──MainView.xaml││└──SettingsView.xaml│├──ViewModels/││├──ShellVi
- VLLM:虚拟大型语言模型(Virtual Large Language Model)
大霸王龙
语言模型人工智能自然语言处理
VLLM:虚拟大型语言模型(VirtualLargeLanguageModel)VLLM指的是一种基于云计算的大型语言模型的虚拟实现。它通常是指那些由多个服务器组成的分布式计算环境中的复杂机器学习模型,这些模型能够处理和理解大量的文本数据。VLLM的核心是“大型语言模型”,这是一种通过深度神经网络训练的算法,能够在理解和生成人类语言方面表现出极高的能力。解释:虚拟:意味着这个模型不是在单个物理设备
- LLM推理入门实践:基于 Hugging Face Transformers 和 vLLM
ctrl A_ctrl C_ctrl V
#大模型llmpython自然语言处理人工智能
文章目录1.HuggingFace模型下载2.HuggingFaceTransformers库模型推理3.关于prompt的组成:system、user、assistant4.vLLM模型推理vLLM的多卡推理踩坑1.HuggingFace模型下载模型在HuggingFace下载,如果下载速度太慢,可以在HuggingFace镜像网站或ModelScope进行下载。使用HuggingFace的下载
- vLLM(Virtual Large Language Model) 框架:一个开源的高性能推理和服务的框架
彬彬侠
大模型vLLM高性能推理PagedAttentionpython大模型
vLLM(VirtualLargeLanguageModel)是一个开源的高性能推理和服务的框架,专为大语言模型(LLM)设计,旨在优化推理速度、内存效率和吞吐量。它通过创新的内存管理和调度技术(如PagedAttention)解决了传统LLM推理中的内存瓶颈和性能问题,广泛应用于对话系统、文本生成、实时翻译等场景。以下是对vLLM框架的详细介绍,包括其核心特性、工作原理、架构、优势、局限性以及使
- 2025大模型入门必读:Prompt指令技巧精讲,看这一篇就够了!
大模型研究院
prompt人工智能学习方法机器学习大数据大模型产品经理
一、提示词的基本概念在人工智能生成内容(AIGC)迅速发展的今天,如何有效地与AI大模型沟通,让它们产出我们真正需要的内容,已经成为一项重要技能。而这项技能的核心,就是本文要深入探讨的"提示词工程"(PromptEngineering)。1.1什么是提示词提示词(Prompt)是用户输入给AI大模型的指令,是人类与AI之间沟通的桥梁。一个好的提示词能够明确地传达我们的意图,引导AI生成符合我们期望
- 找组织——机器学习社区、团体洞察
小哥伯涵
机器学习人工智能
在Github上,有一些中文社区可以看一看:prompt“如果我是个AI小白,想参加到一个组织,接收最新的AI有趣源项目、一些定期的刊物等。我应该加入哪些组织?”AI社区——深度学习社区Reddit上的MachineLearningsubreddit:https://www.reddit.com/r/MachineLearning/是一个拥有超过400,000名成员的活跃社区。在这里,您可以找到有
- AI能力集成设计与Prompt策略
大数据张老师
人工智能promptAI架构
AI能力集成设计与Prompt策略在智能客服系统中引入AI能力,必须建立一套架构化、可扩展的AI服务集成体系,并根据不同业务场景制定Prompt策略,从而实现稳定、精准、高效的AI响应能力。AI能力集成的关键组件设计AI能力集成架构的核心在于通过标准化模块完成请求的预处理、意图识别、Prompt构造、模型调用与响应后处理。以下是系统架构中关键组件的说明:API网关:统一接收用户请求,进行身份校验、
- Prompt Engineering终极手册:构建高效AI提示词库的完整技术路线
LCG元
大模型prompt人工智能
目录一、提示词库构建核心架构二、关键技术实现步骤1.数据采集与清洗2.提示词向量化编码3.聚类分析与分类存储三、API服务化部署四、性能优化方案五、监控与持续优化六、应用效果展示本文将深入探讨构建企业级AI提示词库的完整技术方案,含数据处理、模型训练、部署监控全流程代码实现在AI应用爆炸式增长的今天,提示词质量直接决定模型输出效果。本文将手把手教你构建企业级提示词库,涵盖以下核心技术环节:一、提示
- [CVPR 2025] 高效无监督Prompt与偏好对齐驱动的半监督医学分割
alfred_torres
prompt医学图像分割
CVPR2025|优化SAM:高效无监督Prompt与偏好对齐驱动的半监督医学分割论文信息标题:EnhancingSAMwithEfficientPromptingandPreferenceOptimizationforSemi-supervisedMedicalImageSegmentation作者:AishikKonwer,ZhijianYang,ErhanBas,CaoXiao,Pratee
- 为何在 FastAPI 中需要允许跨域访问(CORS)?(Grok3 回答)
晨欣
fastapipython
prompt:你是一个文笔流畅、专业性极强的技术博客博主,你将结合具体的例子和实际代码解释写一篇为何后端选择fastapi框架时,需要允许跨域访问。为何在FastAPI中需要允许跨域访问(CORS)?在现代Web开发中,前后端分离已经成为主流架构模式。前端通常运行在浏览器中(例如通过React、Vue.js或Angular构建的单页应用),而后端则通过API提供数据支持,比如使用Python的Fa
- Halcon 检测物体定位点
吃个糖糖
Halcon人工智能计算机视觉深度学习
文章目录get_domain返回所有输入图像的定义域作为一个区域add_channels给区域增加灰度值find_shape_model发现匹配模板find_shape_models发现最佳模板示例get_domain返回所有输入图像的定义域作为一个区域Halcon中的区域get_domain(Image:Domain::)Image:图像(input_object):类型可以是(多通道-)图像数
- Anaconda 创建python3.9+pytorch1.10.1+cuda11.3环境
canny_kevin
DeepLearningPythonpythonconda
1.打开AnacondaPowershellPrompt2.创建conda环境condacreate--nameRordAIpython=3.9conda一些命令condainfo--envs:输出中带有【*】号的的就是当前所处的环境condalist:看这个环境下安装的包和版本condainstallnumpyscikit-learn:安装numpysklearn包condaenvremove-
- 利用MySQL玩转数据分析之基础篇
学掌门
数据分析大数据数据库mysql数据分析数据库
知识无底,学海无涯,到今天进入MySQL的学习4天了,知识点虽然简单,但是比较多,所以写一篇博客将MySQL的基础写出来,方便自己以后查找,还有就是分享给大家。1、SQL简述1)SQL的概述StructureQueryLanguage(结构化查询语言)简称SQL,它被美国国家标准局(ANSI)确定为关系型数据库语言的美国标准,后被国际化标准组织(ISO)采纳为关系数据库语言的国际标准。数据库管理系
- 15.5 情感识别准确率86.2%!LanguageMentor实时动态对话系统让学习效率飙升15%
少林码僧
学习langchainllama人工智能语言模型
情感识别准确率86.2%!LanguageMentor实时动态对话系统让学习效率飙升15%LanguageMentorAgent高级对话功能:情感识别与动态调整关键词:情感分析集成、动态难度调节、多模态上下文感知、实时反馈机制、对话状态管理1.情感识别架构设计通过三层处理实现智能对话调节:
- Prompt工程深度解析:从指令模型到前沿模型的提示词设计演进
木鱼时刻
大模型prompt人工智能
深入探讨Prompt工程的核心原理,分析不同代际模型的能力差异,揭示企业级提示词模板化的价值与实践目录1.概述2.Prompt基础:核心要素与原则3.模型演进与Prompt策略差异4.企业级Prompt工程5.Prompt工程技术体系6.特殊任务实践技巧7.总结8.参考资料1.概述随着大语言模型(LLM)技术的飞速迭代,我们正处于一个关键的转折点。模型的演进不再是简单的参数增长,而是在核心能力上产
- 16.7 Prometheus+Grafana实战:容器化监控与日志聚合一站式解决方案
少林码僧
prometheusgrafana人工智能langchainllama语言模型机器学习
《Prometheus+Grafana实战:容器化监控与日志聚合一站式解决方案》关键词:容器化监控、日志聚合、Prometheus、Grafana、ELKStack、用户反馈收集容器化监控与日志系统的架构设计在LanguageMentorAgent生产部署中,监控系统需要覆盖以下维度:
- python和html和css什么关系什么区_python前端HTML和CSS入门
斤木
前端阶段课程介绍1~4:HTML及CSS5~6:JavaScript7~10:jQuery00-知识点预习1、HTML基本结构2、HTML的常用标签3、HTML布局入门4、CSS概述5、CSS书写方式6、CSS常用选择器7、CSS常用属性01-什么是HTML?HTML是用来描述网页的一种语言。HTML指的是超文本标记语言:HyperTextMarkupLanguageHTML不是一种编程语言,而是
- 【Go语言-Day 8】告别冗长if-else:深入解析 switch-case 的优雅之道
吴师兄大模型
Go语言从入门到精通golang开发语言后端go语言人工智能if-else大模型
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 【Python-Day 30】从 self、cls 到 @staticmethod:Python 面向对象三大方法深度解析
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- Spring Boot 3.x 项目搭建 (一)
不愿意透露姓名的樊同学
javaspringbootlog4j后端
以下是一个基础SpringBoot项目的创建指南,整合了官方推荐方式和实用配置,帮助您快速搭建可运行的项目骨架。一、项目创建方式1.在线工具SpringInitializr(推荐)步骤:访问SpringInitializr。配置参数:Project:Maven/Gradle(选Maven更通用)Language:JavaSpringBoot:最新稳定版(如3.x)Group:com.example
- Are Multimodal Large Language Models Pragmatically Competent Listeners in Simple Reference
UnknownBody
LLMDailyMultimodal语言模型人工智能自然语言处理
论文主要内容总结本文聚焦于多模态大语言模型(MLLMs)在指称消解任务中的语用能力研究,通过简单但抽象的视觉刺激(如颜色块和颜色网格)开展实验。具体内容如下:1.研究目的考察LLaVA-NeXT、Qwen2-VL和JanusPro等MLLMs在“导演-匹配者”式参考游戏中,对颜色和空间布局的语境化语用推理能力,验证其是否能像人类一样根据视觉上下文解析指称表达。2.实验方法模型:测试三种MLLMs的
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
 
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
 
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key