- 细说机器学习算法之ROC曲线用于模型评估
Melancholy 啊
机器学习算法人工智能数据挖掘python
系列文章目录第一章:Pyhton机器学习算法之KNN第二章:Pyhton机器学习算法之K—Means第三章:Pyhton机器学习算法之随机森林第四章:Pyhton机器学习算法之线性回归第五章:Pyhton机器学习算法之有监督学习与无监督学习第六章:Pyhton机器学习算法之朴素贝叶斯第七章:Pyhton机器学习算法之XGBoost第八章:Pyhton机器学习算法之GBDT第九章:Pyhton机器学
- (3-5)文生图模型架构:扩散模型
码农三叔
训练RAG多模态)人工智能python深度学习大模型文生图多模态
3.5扩散模型扩散模型(DiffusionModels)是一类用于生成图像的深度学习模型,近年来在图像生成任务中取得了显著的进展。扩散模型的基本思想是通过逐步添加噪声到数据中,然后学习从噪声中恢复原始数据的过程。3.5.1扩散模型的基本概念扩散模型是一种基于随机过程的生成模型,通过逐步添加和去除噪声,实现从随机噪声到高质量数据的转化,其独特的训练和生成机制使其在图像生成领域表现出色。1.扩散过程扩
- 【C++】一文带你学完 C++【完整版-附代码示例】
Ustinian_310
c++开发语言
本文篇幅较长,几乎涵盖了权威C语言教程【CppPrimerPlus】的所有可用知识点,建议点赞收藏关注方便后续阅读。附注:建议学完一个知识点后,同步进行编程练习以便于巩固掌握知识点;编程学习是重理论更重实践的一个过程,唯有多写多练才能快速掌握C++全教程正文开始0.hello.cpp【经典入门程序】#includeintmain(){std::cout>num;std::coutvoidhello
- 深入解析:WinRAR与WinZip的全面对比
夜色呦
winrar
在数字时代,文件压缩工具已成为我们日常工作和生活中不可或缺的一部分。当我们谈论压缩软件时,WinRAR和WinZip是两个最常被提及的名字。尽管它们都提供了压缩和解压文件的功能,但它们之间存在一些关键的差异。本文将深入探讨WinRAR和WinZip的主要区别,包括它们的压缩技术、用户界面、兼容性、安全性、附加功能以及成本效益等方面。1.压缩技术WinRAR和WinZip使用不同的压缩算法。WinR
- 深入剖析 Scikit-learn 中的 LogisticRegression:参数调优指南
夜色呦
scikit-learn机器学习人工智能
LogisticRegression是一种广泛应用于二分类问题的机器学习算法。在scikit-learn库中,LogisticRegression类提供了一个高效且易于使用的实现。本文将深入探讨LogisticRegression的各种参数,并展示如何通过调整这些参数来优化模型的性能。1.LogisticRegression简介LogisticRegression通过使用逻辑函数将线性回归的输出映
- 粒子群算法原理的示例介绍
12abxd
算法模板算法粒子群算法数学建模python
一:粒子群优化算法的介绍粒子群优化算法(PSO)是一种基于群体智能的优化算法,于1995年提出。它受到鸟群狩猎行为的启发,通过模拟鸟群或鱼群的社会行为来进行问题的求解。基本原理粒子群算法中,每个解决问题的潜在解被视为搜索空间中的一个“粒子”,每个粒子代表了问题的一个可能解。粒子在搜索空间中飞行,通过跟踪两个“极值”来更新自己的位置和速度:1.个体极值:粒子自身所经历的最优位置。2.全局极值:整个粒
- Python从0到100(八十六):神经网络-ShuffleNet通道混合轻量级网络的深入介绍
是Dream呀
Pythonpython神经网络网络
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 侯捷 C++ 课程学习笔记:深入理解 C++ 核心技术与实战应用
不能只会打代码
其他javajvm开发语言侯捷C++课程学习笔记
目录引言第一章:C++基础回顾1.1C++的历史与发展1.2C++的核心特性1.3C++的编译与执行第二章:面向对象编程2.1类与对象2.2构造函数与析构函数2.3继承与多态第三章:泛型编程与模板3.1函数模板3.2类模板3.3STL容器与算法第四章:高级特性4.1智能指针4.2移动语义与右值引用4.3Lambda表达式第五章:实战应用5.1项目结构设计5.2性能优化5.3调试与测试第六章:学习心
- 快速学习安装使用etcd
蓝胖子不是胖子
学习etcd数据库
1.什么是etcd?etcd是一个分布式键值存储系统,主要用于分布式系统的配置管理和服务发现。它提供了可靠的数据存储,etcd可以用来构建高可用的分布式键值数据库,根据官网介绍并且支持分布式锁、Leader选举等功能,通常被用作微服务架构中的注册中心。在目前go的大部分组件还有框架中都被采用为注册中心组件相当于zookper和redis2.安装etcd2.1.在本地安装etcd2.1.1.Linu
- cesium学习
qq_45660256
前端
cesium学习一、Cesium初始化CesiumWidget才是核心类\color{red}CesiumWidget才是核心类CesiumWidget才是核心类定义assessTokenCesium.Ion.defaultAccessToken='在Cesium官网中申请的token'实例化cesiumArcGIS影像图层constesri=newCesium.ArcGisMapServerIm
- 经典SQL面试10题(附答案)
智慧化智能化数字化方案
sql
一、提要作为一名数据工作人员,SQL是日常工作中最常用的数据提取&简单预处理语言。因为其使用的广泛性和易学程度也被其他岗位比如产品经理、研发广泛学习使用,本篇文章主要结合经典面试题,给出通过数据开发面试的SQL方法与实战。以下题目均来与笔者经历&网上分享的中高难度SQL题。二、解题思路简单——会考察一些groupby&limit之类的用法,或者平时用的不多的函数比如rand()类;会涉及到一些表之
- 机器学习笔记 - 将音频转换为图像进行分类的机器学习模型
坐望云起
深度学习从入门到精通机器学习深度学习语音识别光谱图Whisper
一、简述语音识别技术是将音频信号转化为文本的过程。其基本原理如下:1.音频录制:首先需要对口语发音进行录制,并将其转化为数字形式的音频文件。2.预处理:对音频信号进行预处理,包括去除杂音干扰、增加音频的信噪比以及消除不必要的语音、噪声等。3.特征提取:特征提取是语音信号处理的一个重要部分,通过对音频数据进行分析,提取其中特有的频率、音调、幅度等数学特征,并转化成数字特征。4.模型训练:在特征提取完
- Cesium ArcGisMapServerImageryProvider API 介绍
WebGISer_白茶乌龙桃
Cesium关键API学习javascript开发语言ecmascript
作为一名GIS研究生,WebGIS技术无疑是我们必学的核心之一。说到WebGIS,要提的就是Cesium——这个让3D地球可视化变得简单又强大的工具。为了帮助大家更好地理解和使用Cesium,我决定把我自己在学习Cesium文档过程中的一些心得和收获分享给大家。大家一起交流,一起进步!在Cesium中,ArcGisMapServerImageryProvider是一个非常有用的API,它允许开发者
- 深入学习华为IPD流程之华为-PDT经理角色认知培训教材
智慧化智能化数字化方案
项目经理售前工程师技能提升学习华为华为IPD流程pdt经理华为IPDipd产品研发IPD项目管理
本文介绍了PDT经理的角色认知,包括其在IPD体系中的位置、基本角色定位、关键管理活动、能力模型和评估方法以及培养路径。文章指出PDT经理是重量级产品开发团队的管理者,负责产品的商业成功和跨功能部门合作,通过绩效管理加强团队凝聚力,对商业结果负责。重点内容:1.PDT经理角色重要,负责产品商业成功和跨功能部门合作。2.关键管理活动包括制定产品策略、管理交付、提升客户满意度等。3.PDT经理需具备战
- 数字孪生制造:如何通过数字化技术提高产品质量和生产效率
AI天才研究院
大数据AI人工智能自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术随着数字技术的发展、生产线上工具的更新换代,数字孪生制造(Digitaltwins)已经成为制造业的一个热点方向。数字孪生制造可以帮助企业实现软硬件联动的全自动化,同时还可以降低成本、提升品牌知名度和竞争力。它在企业资源方面有巨大的投入,既包括资金、人员、设备等,也包括智能制造系统、算法模型和云计算平台等基础设施建设。虽然数字孪生制造的研发已经进入了新阶段,但其实际应用
- 算法随笔_33: 132模式
程序趣谈
算法python数据结构
上一篇:算法随笔_32:移掉k位数字-CSDN博客=====题目描述如下:给你一个整数数组nums,数组中共有n个整数。132模式的子序列由三个整数nums[i]、nums[j]和nums[k]组成,并同时满足:inums[k]。此时我们如何更新这个stck数组呢?先给结论1:我们在stck中删除所有小于nums[9]的元素。把小于nums[9]的最大元素,比如nums[12]存入另一个变量k_m
- 前端学习-事件解绑,mouseover和mouseenter的区别(二十九)
marshalVS
前端学习
目录前言解绑事件语法鼠标经过事件的区别鼠标经过事件示例代码两种注册事件的区别总结前言人道洛阳花似锦,偏我来时不逢春解绑事件on事件方式,直接使用null覆盖就可以实现事件的解绑语法btn.onclick=function(){alert('点击了')}btn.onclick=null;constben=document.querySelector('button');ben.addEventLis
- Python:函数也是对象
Alidme
python开发语言
寒假学习打卡第十七天今天补做了一下MIT6.100L的课后作业,明天就可以开新课了。顺便整理了一下Python里面的一个重要概念:函数也是对象1、函数名可以赋值到其他变量defadd(a,b):returna+bx=10y=5print(add(x,y))#15a_plus_b=addprint(a_plus_b(x,y))#15在以上代码,我们将add函数赋值给a_plus_b这个变量,此时a_
- 毕设分享 基于Kmeans的图像分割算法软件设计
bee_dc
毕业设计毕设大数据
文章目录0简介1Kmeans聚类算法基本原理2基于Kmeans图像分割算法流程4代码运行结果及评价5最后0简介今天学长向大家分享一个毕业设计项目毕业设计基于Kmeans的图像分割算法软件设计项目运行效果:毕业设计基于kmean的图像分割项目分享:见文末!1Kmeans聚类算法基本原理K-Means算法的思想很简单,对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的
- 毕业设计项目 深度学习人体目标检测
bee_dc
毕业设计毕设大数据
1简介今天学长向大家介绍一个机器视觉的毕设项目,基于深度学习的人体目标检测算法研究与实现项目运行效果:毕业设计深度学习行人目标检测系统项目分享:见文末!2目标检测概念普通的深度学习监督算法主要是用来做分类,如图1所示,分类的目标是要识别出图中所示是一只猫。在ILSVRC(ImageNetLargeScaleVisualRecognitionChallenge)竞赛以及实际的应用中,还包括目标定位和
- Hindsight Experience Replay (HER) 算法
C7211BA
算法
HindsightExperienceReplay(HER)算法简介HindsightExperienceReplay(HER)是一种强化学习中的技术,旨在解决稀疏奖励问题,特别适用于目标导向的任务(例如机器人控制、物体抓取等)。它的基本思想是:即使在一个回合中任务失败,我们仍然可以从中获得有效的学习经验,通过“事后推断”(hindsight)来重构目标和奖励。关键概念目标导向任务:这些任务有明确
- A3C(Asynchronous Advantage Actor-Critic)算法
C7211BA
算法
A3C(AsynchronousAdvantageActor-Critic)是一种强化学习算法,它结合了Actor-Critic方法和异步更新(AsynchronousUpdates)技术。A3C是由GoogleDeepMind提出的,并在许多强化学习任务中表现出色,特别是那些复杂的、需要并行处理的环境。A3C主要解决了传统深度强化学习中的一些问题,如训练稳定性和数据效率问题。A3C算法的关键点A
- 【C/C++】开关灯游戏 蓝桥杯/ACM备考
奇变偶不变0727
c语言c++游戏
本题考点预览:【算法:模拟】状态压缩与枚举利用整数的二进制表示对灯的点击状态进行压缩和枚举。矩阵操作与模拟按下按钮后,矩阵中对应灯的状态发生变化,涉及邻接元素的修改。递归思想简化操作每一行的灯状态由上一行的按钮点击状态决定。边界条件处理特别注意矩阵边界灯的翻转,不越界。拷贝与回溯使用memcpy保持初始状态不变,便于尝试不同方案。题目描述5行6列按钮组成的矩阵,每个按钮下面有一盏灯。当按下一个按钮
- python 求导实现_python – NumPy中的Softmax导数接近0(实现)
非凡运营笔记
python求导实现
这是如何以更加矢量化的numpy方式计算softmax函数的导数的答案.然而,偏导数逼近零的事实可能不是数学问题,并且只是学习率或复杂深度神经网络的已知死亡权重问题.像ReLU这样的图层有助于防止后一问题.首先,我使用了以下信号(仅复制您的上一个条目),使其成为4个样本x3个特征,因此更容易看到尺寸发生了什么.>>>signal=[[0.3394572666491664,0.30890680539
- (尚硅谷 java 学习 b 站大学版)Day11 面向对象基础知识初入门
亢从文_Jackson
java学习python
四、面向对象(上)终于到面向对象了,Java语言的重中之重奥利给!!!Java面向对象学习的三条主线:1、Java类及类的成员:属性、方法、构造器;代码块内部类2、面向对象三大特征:封装、继承、多态性、(抽象性)3、其他关键字:this\super\static\final\abstract\interface\package…4.1面向过程(POP)与面向对象(OOP)面向过程:强调是功能行为,
- 2025数学建模美赛C题【Models for Olympic Medal Tables】第一问
步入烟尘
2025数学建模美赛C题2025数学建模美赛数学建模奥运会历史奖牌
本文为个人解题笔记,仅供参考学习。本文C题的第一问。其他问题均在本专栏内,订阅一次,全部可见。文章目录问题1解题全流程解题完整过程:建立预测奥运会奖牌数的数学模型1.数据分析与清理1.1数据来源与结构1.2数据清理2.探索性数据分析(EDA)2.1国家奖牌分布趋势2.2奖牌与赛事数量的关系2.3主办国优势分析3.模型建立3.1奖牌数预测模型3.2奖牌首次获得预测模型3.3奖牌分布与赛事类型关联模型
- 2025年美国大学生数学建模竞赛C题思路(对每题分析)
FFMXjy
数学建模学习-传统算法机器学习深度学习系列课程数学建模美赛美国大学生数学建模
2025年美国大学生数学建模竞赛C题思路开发奖牌数预测模型1.目标:建立一个模型来预测每个国家的奖牌数,特别是金牌和总奖牌数。步骤:2.使用提供的summerOly_athletes.csv和summerOly_medal_counts.csv数据。3.清理数据,处理缺失值和异常值。4.提取有用的特征,如国家、年份、项目、奖牌类型等。5.选择适当的机器学习算法,如线性回归、随机森林或梯度提升树。6
- DeepSeek 推出全新推理模型 R1-Lite 预览版
三花AI
三花AI人工智能
DeepSeek全新研发的推理模型预览版DeepSeek-R1-Lite现已正式上线网页版。R1系列模型采用强化学习训练,推理过程中包含大量反思和验证,思维链长度可达数万字。该系列模型在数学、代码以及各种复杂逻辑推理任务上,取得了媲美o1-preview的推理效果。目前,DeepSeek-R1-Lite仍处于迭代开发阶段,仅支持网页使用,暂不支持API调用。官方表示,正式版DeepSeek-R1模
- Unity3D高级编程C#要点技术排序算法
「已注销」
程序员排序算法算法java
这其中算法能力比较重要,在程序员生涯中算法能力是基础能力的一种,很多时候程序的好坏,一方面看的是写程序的经验,另一方面看的是对计算机原理的理解程度,还有一方面看的是对算法的理解和运用熟练度。算法能力不仅仅代表的是表面的算法熟知度,也是一种追求卓越的精神高度,即对所有经过自己手的程序效率负责的精神高度。在平时工作中某一处的算法有可能运用的很好,其他地方却依然用了很烂的算法或者算法运用的不太妥当,其对
- 跨平台物联网漏洞挖掘算法评估框架设计与实现文献综述之GMN
XLYcmy
漏洞挖掘物联网网络安全漏洞挖掘跨架构静态检测图神经网络项目报告
2.4Gemini和GMN我们采用了两种方式:Gemini和GMN。2.4.2GMN图神经网络(GraphNeuralNetworks-GNNs)是一种用于学习结构化数据及相关预测问题的方法。节点的表示被用于节点分类或生成图向量再用于分类。GMN模型针对图的相似性学习问题,提出了一种使用GNNs将图嵌入到向量空间,并通过交叉图注意机制来计算相似度分数以关联图之间的相似性的模型。GMN模型不是独立地
- Enum用法
不懂事的小屁孩
enum
以前的时候知道enum,但是真心不怎么用,在实际开发中,经常会用到以下代码:
protected final static String XJ = "XJ";
protected final static String YHK = "YHK";
protected final static String PQ = "PQ";
- 【Spark九十七】RDD API之aggregateByKey
bit1129
spark
1. aggregateByKey的运行机制
/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type
- hive创建表是报错: Specified key was too long; max key length is 767 bytes
daizj
hive
今天在hive客户端创建表时报错,具体操作如下
hive> create table test2(id string);
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:javax.jdo.JDODataSto
- Map 与 JavaBean之间的转换
周凡杨
java自省转换反射
最近项目里需要一个工具类,它的功能是传入一个Map后可以返回一个JavaBean对象。很喜欢写这样的Java服务,首先我想到的是要通过Java 的反射去实现匿名类的方法调用,这样才可以把Map里的值set 到JavaBean里。其实这里用Java的自省会更方便,下面两个方法就是一个通过反射,一个通过自省来实现本功能。
1:JavaBean类
1 &nb
- java连接ftp下载
g21121
java
有的时候需要用到java连接ftp服务器下载,上传一些操作,下面写了一个小例子。
/** ftp服务器地址 */
private String ftpHost;
/** ftp服务器用户名 */
private String ftpName;
/** ftp服务器密码 */
private String ftpPass;
/** ftp根目录 */
private String f
- web报表工具FineReport使用中遇到的常见报错及解决办法(二)
老A不折腾
finereportweb报表java报表总结
抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、没有返回数据集:
在存储过程中的操作语句之前加上set nocount on 或者在数据集exec调用存储过程的前面加上这句。当S
- linux 系统cpu 内存等信息查看
墙头上一根草
cpu内存liunx
1 查看CPU
1.1 查看CPU个数
# cat /proc/cpuinfo | grep "physical id" | uniq | wc -l
2
**uniq命令:删除重复行;wc –l命令:统计行数**
1.2 查看CPU核数
# cat /proc/cpuinfo | grep "cpu cores" | u
- Spring中的AOP
aijuans
springAOP
Spring中的AOP
Written by Tony Jiang @ 2012-1-18 (转)何为AOP
AOP,面向切面编程。
在不改动代码的前提下,灵活的在现有代码的执行顺序前后,添加进新规机能。
来一个简单的Sample:
目标类:
[java]
view plain
copy
print
?
package&nb
- placeholder(HTML 5) IE 兼容插件
alxw4616
JavaScriptjquery jQuery插件
placeholder 这个属性被越来越频繁的使用.
但为做HTML 5 特性IE没能实现这东西.
以下的jQuery插件就是用来在IE上实现该属性的.
/**
* [placeholder(HTML 5) IE 实现.IE9以下通过测试.]
* v 1.0 by oTwo 2014年7月31日 11:45:29
*/
$.fn.placeholder = function
- Object类,值域,泛型等总结(适合有基础的人看)
百合不是茶
泛型的继承和通配符变量的值域Object类转换
java的作用域在编程的时候经常会遇到,而我经常会搞不清楚这个
问题,所以在家的这几天回忆一下过去不知道的每个小知识点
变量的值域;
package 基础;
/**
* 作用域的范围
*
* @author Administrator
*
*/
public class zuoyongyu {
public static vo
- JDK1.5 Condition接口
bijian1013
javathreadConditionjava多线程
Condition 将 Object 监视器方法(wait、notify和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象提供多个等待 set (wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。
条件(也称为条件队列或条件变量)为线程提供了一
- 开源中国OSC源创会记录
bijian1013
hadoopsparkMemSQL
一.Strata+Hadoop World(SHW)大会
是全世界最大的大数据大会之一。SHW大会为各种技术提供了深度交流的机会,还会看到最领先的大数据技术、最广泛的应用场景、最有趣的用例教学以及最全面的大数据行业和趋势探讨。
二.Hadoop
&nbs
- 【Java范型七】范型消除
bit1129
java
范型是Java1.5引入的语言特性,它是编译时的一个语法现象,也就是说,对于一个类,不管是范型类还是非范型类,编译得到的字节码是一样的,差别仅在于通过范型这种语法来进行编译时的类型检查,在运行时是没有范型或者类型参数这个说法的。
范型跟反射刚好相反,反射是一种运行时行为,所以编译时不能访问的变量或者方法(比如private),在运行时通过反射是可以访问的,也就是说,可见性也是一种编译时的行为,在
- 【Spark九十四】spark-sql工具的使用
bit1129
spark
spark-sql是Spark bin目录下的一个可执行脚本,它的目的是通过这个脚本执行Hive的命令,即原来通过
hive>输入的指令可以通过spark-sql>输入的指令来完成。
spark-sql可以使用内置的Hive metadata-store,也可以使用已经独立安装的Hive的metadata store
关于Hive build into Spark
- js做的各种倒计时
ronin47
js 倒计时
第一种:精确到秒的javascript倒计时代码
HTML代码:
<form name="form1">
<div align="center" align="middle"
- java-37.有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接
bylijinnan
java
public class MaxCatenate {
/*
* Q.37 有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接,
* 问这n 个字符串最多可以连成一个多长的字符串,如果出现循环,则返回错误。
*/
public static void main(String[] args){
- mongoDB安装
开窍的石头
mongodb安装 基本操作
mongoDB的安装
1:mongoDB下载 https://www.mongodb.org/downloads
2:下载mongoDB下载后解压
 
- [开源项目]引擎的关键意义
comsci
开源项目
一个系统,最核心的东西就是引擎。。。。。
而要设计和制造出引擎,最关键的是要坚持。。。。。。
现在最先进的引擎技术,也是从莱特兄弟那里出现的,但是中间一直没有断过研发的
 
- 软件度量的一些方法
cuiyadll
方法
软件度量的一些方法http://cuiyingfeng.blog.51cto.com/43841/6775/在前面我们已介绍了组成软件度量的几个方面。在这里我们将先给出关于这几个方面的一个纲要介绍。在后面我们还会作进一步具体的阐述。当我们不从高层次的概念级来看软件度量及其目标的时候,我们很容易把这些活动看成是不同而且毫不相干的。我们现在希望表明他们是怎样恰如其分地嵌入我们的框架的。也就是我们度量的
- XSD中的targetNameSpace解释
darrenzhu
xmlnamespacexsdtargetnamespace
参考链接:
http://blog.csdn.net/colin1014/article/details/357694
xsd文件中定义了一个targetNameSpace后,其内部定义的元素,属性,类型等都属于该targetNameSpace,其自身或外部xsd文件使用这些元素,属性等都必须从定义的targetNameSpace中找:
例如:以下xsd文件,就出现了该错误,即便是在一
- 什么是RAID0、RAID1、RAID0+1、RAID5,等磁盘阵列模式?
dcj3sjt126com
raid
RAID 1又称为Mirror或Mirroring,它的宗旨是最大限度的保证用户数据的可用性和可修复性。 RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。
Mir
- yii2 restful web服务快速入门
dcj3sjt126com
PHPyii2
快速入门
Yii 提供了一整套用来简化实现 RESTful 风格的 Web Service 服务的 API。 特别是,Yii 支持以下关于 RESTful 风格的 API:
支持 Active Record 类的通用API的快速原型
涉及的响应格式(在默认情况下支持 JSON 和 XML)
支持可选输出字段的定制对象序列化
适当的格式的数据采集和验证错误
- MongoDB查询(3)——内嵌文档查询(七)
eksliang
MongoDB查询内嵌文档MongoDB查询内嵌数组
MongoDB查询内嵌文档
转载请出自出处:http://eksliang.iteye.com/blog/2177301 一、概述
有两种方法可以查询内嵌文档:查询整个文档;针对键值对进行查询。这两种方式是不同的,下面我通过例子进行分别说明。
二、查询整个文档
例如:有如下文档
db.emp.insert({
&qu
- android4.4从系统图库无法加载图片的问题
gundumw100
android
典型的使用场景就是要设置一个头像,头像需要从系统图库或者拍照获得,在android4.4之前,我用的代码没问题,但是今天使用android4.4的时候突然发现不灵了。baidu了一圈,终于解决了。
下面是解决方案:
private String[] items = new String[] { "图库","拍照" };
/* 头像名称 */
- 网页特效大全 jQuery等
ini
JavaScriptjquerycsshtml5ini
HTML5和CSS3知识和特效
asp.net ajax jquery实例
分享一个下雪的特效
jQuery倾斜的动画导航菜单
选美大赛示例 你会选谁
jQuery实现HTML5时钟
功能强大的滚动播放插件JQ-Slide
万圣节快乐!!!
向上弹出菜单jQuery插件
htm5视差动画
jquery将列表倒转顺序
推荐一个jQuery分页插件
jquery animate
- swift objc_setAssociatedObject block(version1.2 xcode6.4)
啸笑天
version
import UIKit
class LSObjectWrapper: NSObject {
let value: ((barButton: UIButton?) -> Void)?
init(value: (barButton: UIButton?) -> Void) {
self.value = value
- Aegis 默认的 Xfire 绑定方式,将 XML 映射为 POJO
MagicMa_007
javaPOJOxmlAegisxfire
Aegis 是一个默认的 Xfire 绑定方式,它将 XML 映射为 POJO, 支持代码先行的开发.你开发服 务类与 POJO,它为你生成 XML schema/wsdl
XML 和 注解映射概览
默认情况下,你的 POJO 类被是基于他们的名字与命名空间被序列化。如果
- js get max value in (json) Array
qiaolevip
每天进步一点点学习永无止境max纵观千象
// Max value in Array
var arr = [1,2,3,5,3,2];Math.max.apply(null, arr); // 5
// Max value in Jaon Array
var arr = [{"x":"8/11/2009","y":0.026572007},{"x"
- XMLhttpRequest 请求 XML,JSON ,POJO 数据
Luob.
POJOjsonAjaxxmlXMLhttpREquest
在使用XMlhttpRequest对象发送请求和响应之前,必须首先使用javaScript对象创建一个XMLHttpRquest对象。
var xmlhttp;
function getXMLHttpRequest(){
if(window.ActiveXObject){
xmlhttp:new ActiveXObject("Microsoft.XMLHTTP
- jquery
wuai
jquery
以下防止文档在完全加载之前运行Jquery代码,否则会出现试图隐藏一个不存在的元素、获得未完全加载的图像的大小 等等
$(document).ready(function(){
jquery代码;
});
<script type="text/javascript" src="c:/scripts/jquery-1.4.2.min.js&quo