- Mybatis源码学习(七)——ResultSetHandler 结果处理
Laplaces Demon
mybatis学习
通过之前对StatementHandler类(Mybatis源码学习(五)——StatementHandler-CSDN博客)的分析发现在所有StatementHandler接口的实现类,无论是PreparedStatementHandler、CallableStatementHandler还是SimpleStatementHandler都是使用ResultSetHandler对象对结果(包括Li
- 在Ubuntu上使用Apache+MariaDB安装部署Nextcloud并修改默认存储路径
戴草帽的大z
ubuntulinux经验分享nextcloudphpapachemariadb
一、前言Nextcloud是一款开源的私有云存储解决方案,允许用户轻松搭建自己的云服务。它不仅支持文件存储和共享,还提供了日历、联系人、任务管理、笔记等丰富的功能。本文将详细介绍如何在Ubuntu22.04LTS上使用Apache和MariaDB安装部署Nextcloud,并修改默认存储路径为/home/nextcloud_data。二、环境操作系统:Ubuntu22.04LTSWeb服务器:Ap
- 数据库基础知识:理论、E-R图、事务、原则
地信小学生
数据库数据库ubuntupostgresql
(5)数据库理论与E-R图数据库理论(DatabaseTheory)是在创建数据库的过程涉及创建现实世界的抽象模型;将现实世界的概念作为实体表示在数据库中。E-R图(EntityRelationshipDiagramming)用于表示数据模型的图形工具/关系的抽象,主要用于数据库设计阶段,通过实体(Entity)、属性(Attribute)和关系(Relationship)来描述数据之间的结构和联
- ChatGPT是强人工智能吗?
呵呵爱吃菜
chatgpt人工智能
ChatGPT是强人工智能吗?本文从人工智能发展的三个阶段的角度,分析当前强大的AI大模型所处的阶段,并通过对比各阶段的定义,明确各阶段的特点和未来发展方向;NarrowAI(弱人工智能)、AGI(人工通用智能)和ASI(人工超级智能)代表了人工智能发展的三个不同阶段,它们在智能水平、任务范围和应用场景上存在显著差异。以下是它们的总结与对比:1.定义与特点类型NarrowAI(弱人工智能)AGI(
- 图像分类与识别的自组织特征映射网络实践
无声远望
本文还有配套的精品资源,点击获取简介:自组织特征映射网络(SOFM)是一种无监督学习模型,适用于图像处理中的预处理、特征提取和分类识别。通过在MATLAB中实现SOFM,可以进行数据预处理、特征提取、网络训练、分类与识别以及优化评估。本内容涵盖了SOFM网络的应用步骤、训练过程、参数调整和性能评估,旨在提供图像处理问题的解决方案。1.自组织特征映射网络简介1.1自组织特征映射网络概述自组织特征映射
- 全面解析物联网信息安全知识体系
无声远望
本文还有配套的精品资源,点击获取简介:本资料集详细介绍物联网信息安全的多个重要方面,包括基础概念、数学基础、数据安全与隐私保护、集成安全技术、安全分析、防护策略和身份认证。从基本的物联网安全概念到深度探讨密码学基础,再到数据保护技术,再到全面的系统安全设计,安全分析,防御措施以及身份验证技术,这些内容将为研究者、开发者和管理者提供物联网安全的全面视角。1.物联网信息安全基础概念在现代技术不断发展的
- c语言 指针 pdf,深入理解c指针 PDF扫描版[33MB]
origami dance
c语言指针pdf
深入理解C指针内容简介:深入理解C指针和内存管理,提升编程效率!这是一本实战型图书,通过它,读者可以掌握指针动态操控内存的机制、对数据结构的增强支持,以及访问硬件等技术。本书详细阐述了如何在数组、字符串、结构体和函数中使用指针,同时演示了相应的内存模型及其对指针使用的影响。指针为C语言带来了强大的功能和灵活性,却也是C语言中最难啃的一块“骨头”。本书旨在帮读者透彻理解指针,解决这个老大难问题。不论
- 数据库管理系统的数据控制功能
橘子熊-0
数据库
数据库管理系统提供下述4个方面的数据控制功能:(1)数据的安全性控制:防止不合法使用数据库造成数据的泄露和破坏,使每个用户只能按其规定对某些数据进行某种或某些操作和处理。安全性控制是指要尽可能杜绝所有可能的数据库非法访问。数据的安全性是保护数据库以防止不合法使用造成的数据泄露、更改或破坏。安全性措施:①用户标识和鉴定。通过定义用户标识对用户身份进行鉴定,只允许合法用户才能进入系统。②用户存取权限控
- Python-静态方法(@staticmethod)
lhh_qrsly
Python
@staticmethod静态方法只是名义上归属类管理,但是不能使用类变量和实例变量,是类的工具包放在函数前(该函数不传入self或者cls),所以不能访问类属性和实例属性classcal:cal_name='计算器'def__init__(self,x,y):self.x=xself.y=y@property#在cal_add函数前加上@property,使得该函数可直接调用,封装起来defca
- mikro-orm 和typeorm 对比
大耳朵乔乔
NodeJs#SQL#NestJsnode.js数据库
以下是Mikro-ORM和TypeORM的详细对比:设计理念与架构Mikro-ORM:基于数据映射器、工作单元和身份映射模式。这种设计使得它在管理内存中实体状态方面表现优异,能够自动处理事务,当调用em.flush()时,所有计算出的更改都会被包装在一个数据库事务中。TypeORM:支持活跃记录和数据映射器模式,深受Hibernate、Doctrine和Entity框架等传统ORM的影响。它提供了
- Apache Doris 2.1.8 版本正式发布
SelectDB技术团队
Doris数据库大数据数据分析数据仓库
亲爱的社区小伙伴们,ApacheDoris2.1.8版本已于2025年01月24日正式发布。该版本持续在湖仓一体、异步物化视图、查询优化器与执行引擎、存储管理等方面进行改进提升与问题修复,进一步加强系统的性能和稳定性,欢迎大家下载体验。立即下载:https://doris.apache.org/downloadGitHub下载:https://github.com/apache/doris/rel
- k8s pod分类、核心组件、网络模型、kubectl常用命令
2501_90243308
kubernetes网络容器
假如有2个pod,pod有其生命周期,万一pod所在的节点宕机了,那么此pod将应该要在其他的节点上重建,而重建完的pod与原来的pod已经不是同一个pod了,只是两者都是运行的同一个服务而已。且每个容器都有其IP地址,重建的pod中的容器其P地址与之前的pod中容器的IP地址是不一样的,如此一来就会存在一个问题,客户端如何访问这些pod中的容器呢?措施:服务发现:就比如集贸市场的注册摊位和声明地
- H3CNE-17-DHCP动态主机配置协议
马立杰
数通windowsH3CNE网络
动态主机配置协议DHCP(DynamicHostConfigurationProtocol),来分配IP地址(DNS、Gateway)等网络参数,可以减少管理员工作量,避免用户手动配置网络参数时造成的地址冲突。DHCP应用场景DHCP服务器能够为大量主机分配IP地址,并能够集中管理。(1)DHCP接口地址池配置R2:dhcpenintg0/0/0dhcpselectinterfacedhcpser
- 详解数据库系统概述
凭君语未可
数据库数据库oracle
数据库系统概述1.数据库(Database)1.1定义:1.2特点:1.3举例:2.数据库管理系统(DBMS:DatabaseManagementSystem)2.1定义:2.2DBMS的主要功能:2.3常见的数据库管理系统:2.4工作流程(类比):3.数据库系统(DatabaseSystem)3.1定义:3.2组成:3.3举例:三者的关系举例:以电商系统为例总结(《数据库系统概论》)数据库数据库
- C/C++教程 第十四章 —— MFC控件详解
余识-
C/C++实战入门到精通mfcc++c语言
注意本系列文章已升级、转移至我的自建站点中,本章原文为:MFC控件详解目录注意一、前言二、项目建立三、Comboxbox四、ListBox五、GroupBox六、Picturecontrol七、ScrollBar八、SpinControl九、ProgressControl十、hotkey十一、ListControl十二、TreeControl十三、TabControl一、前言通过前面两章的学习,现
- 神经网络|(三)线性回归基础知识
西猫雷婶
神经网络线性回归机器学习
【1】引言前序学习进程中,已经对简单神经元的工作模式有所了解,这种二元分类的工作机制,进一步使用sigmoid()函数进行了平滑表达。相关学习链接为:神经网络|(一)加权平均法,感知机和神经元-CSDN博客神经网络|(二)sigmoid神经元函数-CSDN博客实际上,上述表达模型的一个基本原则是:元素和对应的权重,线性相乘后再和阈值开关作对比,元素的综合影响在本质上是一个线性函数,类似于y=wx+
- Python实现itemCF协同过滤推荐算法并计算召回率、准确率、F1分数和覆盖率
计算机软件程序设计
机器学习python推荐算法开发语言
一个完整的Python实现,包括ItemCF协同过滤算法的实现以及召回率、准确率、F1分数和覆盖率等评估指标的计算。将使用Pandas进行数据处理,Scikit-learn进行相似度计算,并编写函数来生成推荐列表和评估模型性能。1.数据准备首先,需要准备数据。假设有一个用户-物品评分矩阵(可以是显式评分或隐式反馈),表示用户对不同酒店的喜好程度。这里可以使用Pandas来处理数据。importpa
- 情感分析常见算法与模型及实现步骤
计算机软件程序设计
知识科普算法情感分析机器学习
【1】常见算法与模型情感分析(SentimentAnalysis)是一种自然语言处理(NLP)技术,用于识别和提取文本中的主观信息,如情绪、态度和意见。常见的算法和模型包括以下几种:传统机器学习方法朴素贝叶斯(NaiveBayes)基于贝叶斯定理,假设特征之间相互独立。计算简单,适用于大规模数据集。常用于文本分类任务。支持向量机(SVM)通过寻找最优超平面来划分不同的类别。在高维空间中表现良好,适
- 自然语言处理(NLP)-总览图学习
汤姆和佩琦
NLP自然语言处理学习人工智能
文章目录自然语言处理(NLP)-总览图学习1.一张总览图的学习1.语音学(Phonology)2.形态学(Morphology)3.句法学(Syntax)4.语义学(Semantics)5.推理(Reasoning)小结自然语言处理(NLP)-总览图学习转自《Python自然语言处理第二版》1.一张总览图的学习这张图片展示了一个自然语言处理的流程模型,涵盖了从语音分析到应用推理和执行的多个阶段,每
- 深度学习利用数据加载、预处理和增强数据提高模型的性能
weixin_30777913
人工智能深度学习
深度学习数据预处理是一个关键步骤,旨在提高模型的性能和准确性。通过数据加载、预处理和增强,可以显著提高深度学习模型的性能和准确性。在实际应用中,需要根据具体的数据和任务来选择合适的预处理和增强技术。以下将详细论述并举例说明如何加载、预处理和增强数据。一、数据加载在深度学习中,数据加载是第一步。这通常涉及到从各种数据源(如CSV文件、数据库、图像文件夹等)中读取数据。以DeepLearning4J(
- mha mysql 两台机器_MySQL主从复制(8)MHA实现主从高可用
日签君AIUX
mhamysql两台机器
一、MHA介绍1、MHA的作用MHA是实现MySQL高可用的一种成熟解决方案,可以在主从故障时自动完成主从切换,切换速度在30-60秒,并且可以最大程度的去保持数据一致性。MHA由管理节点(Manager)和数据节点(Node)组成,一套MHAManager可以管理多套MySQL集群。当Manager发现MySQLMaster出现故障时自动将一个拥有最新数据的Slave提升为Master,并让另外
- C++——内存管理
kiiila
C++c++
目录1.c++内存分布2.c语言中动态内存管理3.c++动态内存管理4.operatornew和operatordelete函数5.new和delete的实现原理6.定位new表达式(了解)7.malloc/free和new/delete的区别8.什么是内存泄漏,内存泄漏的危害1.c++内存分布内核空间用户代码不能读写栈向下增长内存映射段文件映射、动态库、匿名映射堆向上增长数据段或静态区全局数据、
- 论文阅读:DeepFake-Adapter: Dual-Level Adapter for DeepFake Detection(Deepfake模型快速调参)
海拉鲁的小厨娘
读论文论文阅读
一、论文信息论文名称:DeepFake-Adapter:Dual-LevelAdapterforDeepFakeDetection作者团队:项目主页:https://github.com/rshaojimmy/DeepFake-Adapter(代码暂未开源)二、动机与创新动机:目前的deepfake检测模型泛化能力差,将其归因于过拟合于低级的伪造模式,现有的deepfake检测方法仅关注低级别的伪
- 基于Python的自然语言处理系列(2):Word2Vec(负采样)
会飞的Anthony
自然语言处理人工智能信息系统自然语言处理word2vec人工智能
在本系列的第二篇文章中,我们将继续探讨Word2Vec模型,这次重点介绍负采样(NegativeSampling)技术。负采样是一种优化Skip-gram模型训练效率的技术,它能在大规模语料库中显著减少计算复杂度。接下来,我们将通过详细的代码实现和理论讲解,帮助你理解负采样的工作原理及其在Word2Vec中的应用。1.Word2Vec(负采样)原理1.1负采样的背景在Word2Vec的Skip-g
- 大模型GUI系列论文阅读 DAY4:《PREDICT: Multi-Agent-based Debate Simulation for Generalized Hate Speech Detecti》
feifeikon
论文阅读
摘要虽然已经提出了一些公共基准用于训练仇恨言论检测模型,但这些基准之间的标注标准差异为模型的泛化学习带来了挑战,限制了其适用性。先前的研究提出了通过数据整合或扩充来泛化模型的方法,但在克服数据集之间的标注标准差异方面仍然存在局限性。为了解决这些挑战,我们提出了PREDICT,一种基于多代理(multi-agent)概念的仇恨言论检测新框架。PREDICT包括两个阶段:(1)PRE(基于视角的推理)
- 2025-1-21-sklearn学习(43) 使用 scikit-learn 介绍机器学习 楼上阑干横斗柄,寒露人远鸡相应。
汤姆和佩琦
sklearn机器学习sklearn学习python人工智能scikit-learn
文章目录sklearn学习(43)使用scikit-learn介绍机器学习43.1机器学习:问题设置43.2加载示例数据集43.3学习和预测43.4模型持久化43.4规定43.4.1类型转换43.4.2再次训练和更新参数43.4.3多分类与多标签拟合sklearn学习(43)使用scikit-learn介绍机器学习文章参考网站:https://sklearn.apachecn.org/和https
- 【大模型】ChatGPT 创作各类高质量文案使用详解
小码农叔叔
AI大模型实战与应用ChatGPT文案创作ChatGPT文案创作详解ChatGPT文案创作技巧ChatGPT数据分析ChatGPT生成PPT
目录一、前言二、ChatGPT文案创作的优势三、ChatGPT各类文案创作操作实战3.1ChatGPT创作产品文案3.1.1ChatGPT创作产品文案基本思路3.1.2ChatGPT创作产品文案案例一3.1.2.1操作过程3.1.3ChatGPT创作产品文案案例二3.2ChatGPT创作视频脚本3.2.1ChatGPT创作视频脚本基本思路3.2.2ChatGPT创作视频脚本案例一3.3ChatGP
- NPM 包管理问题汇总
yqcoder
npm前端node.js
一、npmlogin问题当使用npmlogin登录时报错403Forbidden-PUThttps://registry.npmmirror.com/-/user/org.cou1.解决方法切换npm源,打开npmconfigsetregistryhttps://registry.npmjs.org二、npmpublish问题当使用npmpublish发布包时报错403Forbidden-PUTh
- 【python】GUI框架——wxPython
草莓泰面包
pythonpython开发语言
文章目录GUIwxPython结构启动界面——wx.App代码遇到报错:wx.Frame()框架wx.Panel()容器布局——wx.SizerBox布局管理器(默认水平布局)控件statictext文本类字体格式Fonttextctrl输入文本类wx.Validator是用于验证用户输入的类,它允许您自定义输入验证规则和错误处理。Button按钮FileDialogMessageDialogEv
- 周报管理系统
大霸王龙
行业+领域+业务场景=定制pythonmicrosoftascii文本处理
代码仓库产品名称:智汇周报管理系统主要功能:自动化报告生成:智汇周报管理系统能够自动收集项目进展、任务完成情况、团队成员工作日志等关键数据,基于预设模板或用户自定义模板,一键生成周报。支持多格式导出(如Word、PDF、Excel),满足不同场景下的报告需求。智能数据分析与可视化:系统内置强大的数据分析引擎,能够自动对收集到的数据进行统计分析,如任务完成率、进度延误情况、成员工作负荷等,并通过图表
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比