Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
时间复杂度O(n^2) 空间复杂度O(n^2)
class Solution {
public:
int helper(vector<vector<int>>& triangle,int x,int y,vector<vector<int>>& dp) {
int n = triangle.size();
if(x>=n||y>=n) return 0;
if(dp[x][y])
return dp[x][y];
else
dp[x][y] = min(helper(triangle,x+1,y,dp),helper(triangle,x+1,y+1,dp)) + triangle[x][y];
return dp[x][y];
}
int minimumTotal(vector<vector<int>>& triangle) {
int n = triangle.size();
if(!n) return 0;
vector<vector<int>> dp(n,vector<int>(n,0));
int res = helper(triangle,0,0,dp);
return res;
}
};
class Solution {
public:
int helper(vector<vector<int>>& triangle,int x,int y,vector<int>& dp) {
int n = triangle.size();
if(x>=n||y>=n) return 0;
for(int i=0;i<n;++i)
dp[i] = triangle[n-1][i];
for(int i=n-2;i>=0;--i) {
for(int j=0;j<=i;++j) {
dp[j] = min(dp[j],dp[j+1]) + triangle[i][j];
}
}
return dp[0];
}
int minimumTotal(vector<vector<int>>& triangle) {
int n = triangle.size();
if(!n) return 0;
vector<int> dp(n,0);
int res = helper(triangle,0,0,dp);
return res;
}
};