- 直肠癌远处转移预测模型临床影响力研究Protocol
医学AppMatrix
预测模型构建和评价人工智能大数据机器学习
直肠癌远处转移预测模型临床影响力研究Protocol举例说明AI工具,包括LLM模型和临床预测模型,的临床影响力研究的流程,这是AI工具进入临床实践之前必要的评估流程,如果AI工具与现有的临床工具相比,有正面的临床影响力,即可以使患者收益或者提高效率、节约资源,才可以进入临床实践。需要说明的是,AI工具的临床影响力也可能是负面的,所以临床影响力研究的初期,需要小规模的研究以确定AI工具不是有害的。
- 如何进行存储容量规划?
ScaleFlux锐钲
数据库大数据dba云计算
关于CSD3000:CSD3000是ScaleFlux推出的首款支持压缩的标准NVMeSSD.该产品采用先进的系统级芯片(SoC),和软件开发技术,实现了存储、内存和计算的有效连接,并加入了硬件计算加速引擎,来缓解数据拥堵,减轻CPU负载和服务器体系结构中的瓶颈,释放未被充分利用的资源。极大优化了NVMeSSD,提升了存储的能力。关于ScaleFlux:ScaleFlux成立于2014年,是大规模
- 景联文科技医疗数据处理平台:强化医疗数据标注与管理,推动医疗数字化新篇章
景联文科技
科技
随着医疗科技快速进步与广泛应用,医疗信息的规模正在迅速扩张,如何有效管理这些医疗数据成为了关键议题。医疗数据不仅包括传统的纸质病历,还有电子病历、实验室检测结果、医学影像等多样化的数字信息。为确保这些数据能为临床决策、科研分析和患者护理提供有力支持,需要由具备专业知识的医学专家来进行处理。景联文科一站式医疗数据处理平台,旨在为医生提供高效、准确的数据标注工具,有效支持医生进行高质量标注工作。景联文
- 高效高并发调度架构
之群害马
架构
以下是从架构层面为你提供的适合多核CPU、多GPU环境下API客户端、服务端高级调度,以实现高效并发大规模与用户交互的技术栈:通信协议gRPC:基于HTTP/2协议,具有高性能、低延迟的特点,支持二进制序列化(通常搭配Protobuf),非常适合高并发场景。它提供了流式通信和多路复用功能,可有效减少网络开销。常用于微服务之间的通信,例如机器学习模型服务与前端应用之间的交互。RSocket:是一种基
- LLaMA3大模型技术全网最全解析——模型架构与训练方法(收录于GPT-4/ChatGPT技术与产业分析)
chenweiPhD
人工智能深度学习语言模型架构
Meta在周四(4月18日)发布了其最新大型语言模型LLaMA3。该模型将被集成到其虚拟助手MetaAI中。Meta自称8B和70B的LLaMA3是当今8B和70B参数规模的最佳模型,并在推理、代码生成和指令跟踪方面有了很大进步。(点赞是我们分享的动力)--------------------------------------------------主编作者陈巍博士,高级职称,曾担任华为系相关自
- 智能巡检装置的“奇幻之旅”:输电线路的无人守护者
深圳特力康何哈哈
安全运维
产品别名:电线路实时监控设备、电力线路动态监测系统、输电线路智能巡检装置、智能输电线路监控方案产品型号:TLKS-PMG-100B输电线路通道可视化监测装置一、产品描述:随着电力需求的不断增长和电网规模的持续扩大,传统的输电线路巡检方式已经难以满足现代电网高效、全面、准确的巡视需求。人工巡检不仅耗时费力,而且在复杂地形和恶劣环境下存在较大的安全风险。为此,深圳特力康科技有限公司推出了输电线路通道可
- spiking neural network概念学习
Zaгathustra
科研工作深度学习神经网络机器学习
我们认为,SNNs最大的优势在于其能够充分利用基于时空事件的信息。今天,我们有相当成熟的神经形态传感器,来记录环境实时的动态改变。这些动态感官数据可以与SNNs的时间处理能力相结合,以实现超低能耗的计算。在此类传感器中使用SNNs主要受限于缺乏适当的训练算法,从而可以有效地利用尖峰神经元的时间信息。实际上就精度而言,在大多数学习任务中SNNs的效果仍落后于第二代的深度学习。很明显,尖峰神经元可以实
- 蓝桥杯备考:贪心算法简介
无敌大饺子 1
贪心算法算法
贪心算法就是企图用局部最优的策略找出全局最优步骤就是1,把解决问题的过程分成若干步。2,每一步都选择当前看起来最优的解法。3,希望得到全局最优的结果比较经典的例题一个就是找零问题钞票种类[20,10,5,1]用最小的张数找零46的时候,先把最大的20的找完,然后找10的,再找5的,最后再找1的直到不能再找,过程就是46:找零20---》26:找零20-----》6:找零5-----》1:找零1--
- 简化版奇异值分解(SVD)方法详解
DuHz
数理统计学知识机器学习人工智能算法信息与通信信号处理
简化版奇异值分解(SVD)方法详解奇异值分解(SVD)是一个强大的矩阵分解工具,广泛应用于数据降维、图像压缩、机器学习等领域。然而,对于大规模数据或高维矩阵,计算和存储的开销非常大,因此提出了多种简化版的SVD方法。这些简化版方法在保证解的精度的同时,能够显著减少计算量和内存占用。本文将详细介绍几种简化版SVD方法,包括经济型SVD、随机化SVD、增量SVD、分块SVD和偏最小二乘法(PLS),并
- 理论一、大模型—概念
伯牙碎琴
大模型自然语言处理ai
一、总述大模型通常指的是参数规模庞大、训练难度较高的人工智能模型。随着深度学习技术的发展,研究人员和企业越来越倾向于构建更大的模型,以提高模型的性能和泛化能力。这些大模型往往需要大量的数据和计算资源来训练,并且在实际应用中通常表现出色。大模型全称是大型语言模型(LLM,LargeLanguageModel),这个“大”主要指模型结构容量大,结构中的参数多,用于预训练大模型的数据量大。一个大模型可以
- 一、大模型微调的前沿技术与应用
伯牙碎琴
大模型微调人工智能大模型微调Deepseek
大模型微调的前沿技术与应用随着大规模预训练模型(如GPT、BERT、T5等)的广泛应用,大模型微调(Fine-Tuning,FT)成为了提升模型在特定任务中性能的关键技术。通过微调,开发者可以根据实际需求调整预训练模型的参数,使其更好地适应特定应用场景。本文将介绍大模型微调技术的前沿发展,分析不同微调方法的特点、适用场景以及优缺点,并对它们进行系统分类。微调技术的重要性大模型微调能够帮助开发者根据
- 揭秘DeepSeek内幕:清华教授剖析AI模型技术原理
大模型.
人工智能chatgpt安全agigpt大模型deepseek
从ChatGPT到各种新兴的AI模型,每一次技术突破都能引发广泛的关注和讨论——而最近AI界的“新宠”,无疑是DeepSeek。在本文中,清华大学长聘副教授将深入剖析DeepSeekR1背后的大规模强化学习技术及其基本原理,并进一步展望大模型技术未来的发展方向。1、透过DeepSeekR1,看大模型技术的发展趋势今天我将从宏观角度为大家介绍DeepSeekR1所代表的大规模强化学习技术,及其基本原
- 计算机视觉:COCO数据集
00&00
计算机视觉深度学习人工智能计算机视觉人工智能
COCO(CommonObjectsinContext)是一个广泛使用的计算机视觉数据集,主要用于图像识别、物体检测、分割和关键点检测等任务。以下是对COCO数据集的详细介绍,包括其特点、组成部分以及在计算机视觉中的应用。一、COCO数据集的特点1.规模庞大COCO数据集包含超过30万张图像,其中超过20万张图像有注释。这些图像来自不同的场景和对象,使得数据集具有广泛的代表性。2.丰富的标注信息物
- DeepSeek正重构具身大模型和人形机器人赛道!
Robot251
重构机器人人工智能科技自动驾驶
中国人工智能公司DeepSeek(深度求索)以“低成本、高效率、强开放”的研发范式横空出世,火遍并震撼全球科技圈;DeepSeek展现出来的核心竞争力,除了低成本及推理能力,更重要的是开源模型能力追赶上了最新的闭源模型;而对具身智能领域影响最大的当属于其开源大模型DeepSeek-R1。2024年1月20日,公司发布全球首个完全通过强化学习训练的专注于推理任务的高性能语言模型DeepSeek-R1
- 优先级队列 PriorityQueue 模拟实现
a添砖Java
java开发语言
文章目录概要整体架构流程小结概要优先级队列实际是小堆,根据不同的比较方法实现小堆,也可以根据自己的需要重写比较方法,从而实现自己想要的优先级队列,获取想要的数据,接下来将会用整数模拟实现一个优先级队列;这里我的优先是优先获取最小的元素,保证出队的永远是现存的数据里最小的;整体架构流程packagedom.bite;importjava.util.Arrays;publicclassPriority
- AI 大模型创业:如何利用市场优势?
SuperAGI2025
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
AI大模型创业:如何利用市场优势?1.背景介绍随着人工智能技术的不断发展,大模型(LargeModels)在商业化应用中日益受到关注。大模型是指在特定领域中应用广泛、参数量巨大的神经网络模型,如BERT、GPT-3、DALL-E等。这些大模型通过在大规模数据集上进行预训练,具备强大的泛化能力和适应性,能够广泛应用于自然语言处理(NLP)、计算机视觉(CV)、生成对抗网络(GAN)等多个领域。然而,
- 5G应用创新发展策略研究
米朵儿技术屋
计算机科学及电子科技技术专栏5G
【摘要】我国高度重视5G产业发展,积极推进5G赋能垂直行业数字化转型,5G应用发展环境不断完善,5G应用进入加速导入期。主要分析了5G应用发展环境、国内外现状以及产业融合应用发展存在的问题,并给予产业应用创新发展相关建议,推动网络快速部署,加速行业数字化转型升级,实现数字经济社会新变革。【关键词】5G;融合应用;智简网络15G应用发展环境目前全球5G商用发展已初具规模,为5G应用的规模落地和创新发
- Hadoop 的分布式缓存机制是如何实现的?如何在大规模集群中优化缓存性能?
晚夜微雨问海棠呀
分布式hadoop缓存
Hadoop的分布式缓存机制是一种用于在MapReduce任务中高效分发和访问文件的机制。通过分布式缓存,用户可以将小文件(如配置文件、字典文件等)分发到各个计算节点,从而提高任务的执行效率。分布式缓存的工作原理文件上传:用户将需要缓存的文件上传到HDFS(HadoopDistributedFileSystem)。文件路径可以在作业配置中指定。作业提交:在提交MapReduce作业时,用户可以通过
- 适配器模式详解(Java)
le_duoduo
java适配器模式
一、引言1.1定义与类型适配器模式是一种结构型设计模式,主要目的是将一个类的接口转换为客户期望的另一个接口。这种模式使得原本因为接口不匹配而不能一起工作的类可以一起工作,从而提高了类的复用性。适配器模式分为类适配器和对象适配器两种类型。类适配器使用继承关系来实现,而对象适配器则使用组合关系。适配器模式的核心在于解决接口不兼容的问题。在软件系统中,随着应用环境的变化,常常需要将一些现存的对象放在新的
- 集群与分片:深入理解及应用实践
一休哥助手
架构系统架构
目录引言什么是集群?集群的定义集群的类型什么是分片?分片的定义分片的类型集群与分片的关系集群的应用场景负载均衡高可用性分片的应用场景大数据处理数据库分片集群与分片的架构设计系统架构设计数据存储设计案例分析Hadoop集群Elasticsearch分片性能优化策略集群性能优化分片性能优化挑战和解决方案总结参考资料引言在现代计算系统中,处理大规模数据和提高系统的可靠性已经成为了基础需求。集群和分片是两
- 跟着ai辅助学习vue3
IT、木昜
vue全家桶vueAI辅助学习前端框架学习
第一章:基础入门(1-2周)1.了解Vue3概述阅读官方文档简介访问Vue3官方文档,在首页或简介板块中,重点了解Vue3相较于Vue2的重大变革。比如,Vue3采用了Proxy实现响应式系统,在性能上有显著提升,尤其是在处理大规模数据时,数据劫持的效率更高。了解CompositionAPI的引入,它解决了OptionsAPI在代码复用和逻辑组织上的痛点,让代码结构更加清晰,易于维护和扩展。例如,
- 算法面试题
后端
以下是一些常见的算法面试题:一、排序算法请简述快速排序算法的时间复杂度和空间复杂度,并说明其稳定性。答案:时间复杂度:平均情况:$O(nlogn)$,其中$n$是待排序元素的数量。这是因为快速排序每次划分大致将数组分成两半,需要进行$logn$次划分,每次划分的操作近似为线性时间。最坏情况:$O(n^2)$,当每次划分都极度不平衡(例如已经有序的数组,且选择的基准元素总是最小或最大的元素)时会出现
- java 缓存篇2
dzl84394
java缓存开发语言
缓存的部署方式单机主从哨兵集群特性主从(Master-Slave)哨兵(Sentinel)集群(Cluster)数据分片不支持不支持支持,基于slot进行水平分片高可用性部分支持(手动故障转移)高可用性,自动故障转移高可用性,自动故障转移及数据分片配置复杂度低中高扩展性低至中中高适用场景中小规模应用,读多写少需要高可用性且不需要分片的应用大规模分布式应用,需水平扩展和高可用性一致性弱(异步复制,可
- Elasticsearch和Kibana的安装部署及服务器配置
TpCode
elasticsearch服务器大数据
Elasticsearch和Kibana是一对强大的工具,用于搜索、分析和可视化大规模数据集。Elasticsearch是一个开源的分布式搜索和分析引擎,而Kibana是一个用于数据可视化的开源工具。本文将详细介绍如何安装、部署和配置Elasticsearch和Kibana,并在服务器上运行它们。步骤1:安装JavaElasticsearch和Kibibana都需要Java来运行。确保您的服务器上
- ADX物化视图的内存优化与去重策略
t0_54coder
编程问题解决手册flaskpython后端个人开发
在AzureDataExplorer(ADX)中使用物化视图(MaterializedView)时,处理大规模数据集的去重和聚合操作时,可能会遇到内存问题。本文将详细讨论如何通过优化策略来克服这些问题,并提供一个具体的实例来展示如何实现。问题背景当我们尝试在ADX中创建一个物化视图,用于从源表中去除重复数据并进行聚合操作时,常常会遇到内存不足的错误。这通常是由于distinct*操作过于消耗内存,
- 滴滴开源新项目Unify:聚焦Flutter与原生通信难题,助力跨端应用落地
滴滴技术
开源flutter
引言在移动开发领域,移动跨端技术因其提效收益,逐渐成为业界趋势之一。Flutter作为近年来热门的跨端技术,以高性能、自渲染、泛跨端著称,得到广泛应用。在滴滴国际化业务中,我们大量应用Flutter。目前已在滴滴国际化外卖、滴滴国际化出行司机端等业务中大规模落地,整体交付提效50%+,收益显著。在大规模Flutter跨端场景下,存量的原生业务与增量Flutter业务间的双向通信成为痛点问题。为此,
- DataWhale组队 LeetCode task1
菜鸟码农01
leetcode算法
目录1.数据结构2.算法3.程序设计总结1.算法复杂度的评估方法2.问题规模n3.时间复杂度4.空间复杂度的定义5.空间复杂度的组成6.空间复杂度的计算总结一、什么是算法?算法的用处是什么?算法+数据结构=程序这一公式简洁地表达了程序设计的核心要素。算法是解决问题的步骤或方法,而数据结构则是数据的组织、存储和管理方式。程序则是算法和数据结构的具体实现。1.数据结构数据结构是带有结构特性的数据元素的
- 代码随想录 Day 32 |【第八章 贪心算法 part 01】理论基础、455.分发饼干、376. 摆动序列、53. 最大子序和
Accept17
贪心算法算法
一、理论基础代码随想录1.什么是贪心贪心的本质是选择每一阶段的局部最优,从而达到全局最优。2.贪心的解题步骤将问题分解为若干个子问题找出适合的贪心策略求解每一个子问题的最优解将局部最优解堆叠成全局最优解二、455.分发饼干代码随想录1.解题思路尽量用最大的饼干去满足胃口大的孩子。2.代码实现(1)因为是用大饼干满足胃口大的孩子,所以对饼干、孩子胃口数组排序。定义一个result变量,用于记录喂饱了
- 深入浅出 Spring Cloud 微服务:架构、核心组件与应用实践
风亦辰739
springspringcloud微服务
随着互联网应用规模的扩大和复杂度的提升,传统的单体架构难以满足企业对于高并发、高可用性和快速迭代的需求。微服务架构成为一种解决方案,帮助企业将应用拆分为多个小型服务模块,各模块独立开发、部署和扩展。SpringCloud作为微服务架构的核心框架,提供了一整套工具和规范,极大简化了微服务开发与管理的难度。本文将带你了解SpringCloud微服务的架构、核心组件以及实际应用场景,帮助开发者快速上手并
- 蓝桥杯备战 Day3 2022.3.1
Astoria_Csy
蓝桥杯职场和发展
特殊回文数问题描述123321是一个非常特殊的数,它从左边读和从右边读是一样的。输入一个正整数n,编程求所有这样的五位和六位十进制数,满足各位数字之和等于n。数据规模和约定1<=n<=54。这道题昨天没做出来,今天想了一会解决了。总体思路就是枚举10000到1000000之间的所有回文数,然后判断加起来是否等于n。这里注意左边不能设置成9999,不然n=36时,9999加起来也是36,但是是4位数
- 解线性方程组
qiuwanchi
package gaodai.matrix;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class Test {
public static void main(String[] args) {
Scanner scanner = new Sc
- 在mysql内部存储代码
annan211
性能mysql存储过程触发器
在mysql内部存储代码
在mysql内部存储代码,既有优点也有缺点,而且有人倡导有人反对。
先看优点:
1 她在服务器内部执行,离数据最近,另外在服务器上执行还可以节省带宽和网络延迟。
2 这是一种代码重用。可以方便的统一业务规则,保证某些行为的一致性,所以也可以提供一定的安全性。
3 可以简化代码的维护和版本更新。
4 可以帮助提升安全,比如提供更细
- Android使用Asynchronous Http Client完成登录保存cookie的问题
hotsunshine
android
Asynchronous Http Client是android中非常好的异步请求工具
除了异步之外还有很多封装比如json的处理,cookie的处理
引用
Persistent Cookie Storage with PersistentCookieStore
This library also includes a PersistentCookieStore whi
- java面试题
Array_06
java面试
java面试题
第一,谈谈final, finally, finalize的区别。
final-修饰符(关键字)如果一个类被声明为final,意味着它不能再派生出新的子类,不能作为父类被继承。因此一个类不能既被声明为 abstract的,又被声明为final的。将变量或方法声明为final,可以保证它们在使用中不被改变。被声明为final的变量必须在声明时给定初值,而在以后的引用中只能
- 网站加速
oloz
网站加速
前序:本人菜鸟,此文研究总结来源于互联网上的资料,大牛请勿喷!本人虚心学习,多指教.
1、减小网页体积的大小,尽量采用div+css模式,尽量避免复杂的页面结构,能简约就简约。
2、采用Gzip对网页进行压缩;
GZIP最早由Jean-loup Gailly和Mark Adler创建,用于UNⅨ系统的文件压缩。我们在Linux中经常会用到后缀为.gz
- 正确书写单例模式
随意而生
java 设计模式 单例
单例模式算是设计模式中最容易理解,也是最容易手写代码的模式了吧。但是其中的坑却不少,所以也常作为面试题来考。本文主要对几种单例写法的整理,并分析其优缺点。很多都是一些老生常谈的问题,但如果你不知道如何创建一个线程安全的单例,不知道什么是双检锁,那这篇文章可能会帮助到你。
懒汉式,线程不安全
当被问到要实现一个单例模式时,很多人的第一反应是写出如下的代码,包括教科书上也是这样
- 单例模式
香水浓
java
懒汉 调用getInstance方法时实例化
public class Singleton {
private static Singleton instance;
private Singleton() {}
public static synchronized Singleton getInstance() {
if(null == ins
- 安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
AdyZhang
apachehttp server
安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
每次到这一步都很小心防它的端口冲突问题,结果,特意留出来的80端口就是不能用,烦。
解决方法确保几处:
1、停止IIS启动
2、把端口80改成其它 (譬如90,800,,,什么数字都好)
3、防火墙(关掉试试)
在运行处输入 cmd 回车,转到apa
- 如何在android 文件选择器中选择多个图片或者视频?
aijuans
android
我的android app有这样的需求,在进行照片和视频上传的时候,需要一次性的从照片/视频库选择多条进行上传
但是android原生态的sdk中,只能一个一个的进行选择和上传。
我想知道是否有其他的android上传库可以解决这个问题,提供一个多选的功能,可以使checkbox之类的,一次选择多个 处理方法
官方的图片选择器(但是不支持所有版本的androi,只支持API Level
- mysql中查询生日提醒的日期相关的sql
baalwolf
mysql
SELECT sysid,user_name,birthday,listid,userhead_50,CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')),CURDATE(), dayofyear( CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')))-dayofyear(
- MongoDB索引文件破坏后导致查询错误的问题
BigBird2012
mongodb
问题描述:
MongoDB在非正常情况下关闭时,可能会导致索引文件破坏,造成数据在更新时没有反映到索引上。
解决方案:
使用脚本,重建MongoDB所有表的索引。
var names = db.getCollectionNames();
for( var i in names ){
var name = names[i];
print(name);
- Javascript Promise
bijian1013
JavaScriptPromise
Parse JavaScript SDK现在提供了支持大多数异步方法的兼容jquery的Promises模式,那么这意味着什么呢,读完下文你就了解了。
一.认识Promises
“Promises”代表着在javascript程序里下一个伟大的范式,但是理解他们为什么如此伟大不是件简
- [Zookeeper学习笔记九]Zookeeper源代码分析之Zookeeper构造过程
bit1129
zookeeper
Zookeeper重载了几个构造函数,其中构造者可以提供参数最多,可定制性最多的构造函数是
public ZooKeeper(String connectString, int sessionTimeout, Watcher watcher, long sessionId, byte[] sessionPasswd, boolea
- 【Java命令三】jstack
bit1129
jstack
jstack是用于获得当前运行的Java程序所有的线程的运行情况(thread dump),不同于jmap用于获得memory dump
[hadoop@hadoop sbin]$ jstack
Usage:
jstack [-l] <pid>
(to connect to running process)
jstack -F
- jboss 5.1启停脚本 动静分离部署
ronin47
以前启动jboss,往各种xml配置文件,现只要运行一句脚本即可。start nohup sh /**/run.sh -c servicename -b ip -g clustername -u broatcast jboss.messaging.ServerPeerID=int -Djboss.service.binding.set=p
- UI之如何打磨设计能力?
brotherlamp
UIui教程ui自学ui资料ui视频
在越来越拥挤的初创企业世界里,视觉设计的重要性往往可以与杀手级用户体验比肩。在许多情况下,尤其对于 Web 初创企业而言,这两者都是不可或缺的。前不久我们在《右脑革命:别学编程了,学艺术吧》中也曾发出过重视设计的呼吁。如何才能提高初创企业的设计能力呢?以下是 9 位创始人的体会。
1.找到自己的方式
如果你是设计师,要想提高技能可以去设计博客和展示好设计的网站如D-lists或
- 三色旗算法
bylijinnan
java算法
import java.util.Arrays;
/**
问题:
假设有一条绳子,上面有红、白、蓝三种颜色的旗子,起初绳子上的旗子颜色并没有顺序,
您希望将之分类,并排列为蓝、白、红的顺序,要如何移动次数才会最少,注意您只能在绳
子上进行这个动作,而且一次只能调换两个旗子。
网上的解法大多类似:
在一条绳子上移动,在程式中也就意味只能使用一个阵列,而不使用其它的阵列来
- 警告:No configuration found for the specified action: \'s
chiangfai
configuration
1.index.jsp页面form标签未指定namespace属性。
<!--index.jsp代码-->
<%@taglib prefix="s" uri="/struts-tags"%>
...
<s:form action="submit" method="post"&g
- redis -- hash_max_zipmap_entries设置过大有问题
chenchao051
redishash
使用redis时为了使用hash追求更高的内存使用率,我们一般都用hash结构,并且有时候会把hash_max_zipmap_entries这个值设置的很大,很多资料也推荐设置到1000,默认设置为了512,但是这里有个坑
#define ZIPMAP_BIGLEN 254
#define ZIPMAP_END 255
/* Return th
- select into outfile access deny问题
daizj
mysqltxt导出数据到文件
本文转自:http://hatemysql.com/2010/06/29/select-into-outfile-access-deny%E9%97%AE%E9%A2%98/
为应用建立了rnd的帐号,专门为他们查询线上数据库用的,当然,只有他们上了生产网络以后才能连上数据库,安全方面我们还是很注意的,呵呵。
授权的语句如下:
grant select on armory.* to rn
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('This example should only be run from a Web Brows
- 美国电影超短200句
dcj3sjt126com
电影
1. I see. 我明白了。2. I quit! 我不干了!3. Let go! 放手!4. Me too. 我也是。5. My god! 天哪!6. No way! 不行!7. Come on. 来吧(赶快)8. Hold on. 等一等。9. I agree。 我同意。10. Not bad. 还不错。11. Not yet. 还没。12. See you. 再见。13. Shut up!
- Java访问远程服务
dyy_gusi
httpclientwebservicegetpost
随着webService的崛起,我们开始中会越来越多的使用到访问远程webService服务。当然对于不同的webService框架一般都有自己的client包供使用,但是如果使用webService框架自己的client包,那么必然需要在自己的代码中引入它的包,如果同时调运了多个不同框架的webService,那么就需要同时引入多个不同的clien
- Maven的settings.xml配置
geeksun
settings.xml
settings.xml是Maven的配置文件,下面解释一下其中的配置含义:
settings.xml存在于两个地方:
1.安装的地方:$M2_HOME/conf/settings.xml
2.用户的目录:${user.home}/.m2/settings.xml
前者又被叫做全局配置,后者被称为用户配置。如果两者都存在,它们的内容将被合并,并且用户范围的settings.xml优先。
- ubuntu的init与系统服务设置
hongtoushizi
ubuntu
转载自:
http://iysm.net/?p=178 init
Init是位于/sbin/init的一个程序,它是在linux下,在系统启动过程中,初始化所有的设备驱动程序和数据结构等之后,由内核启动的一个用户级程序,并由此init程序进而完成系统的启动过程。
ubuntu与传统的linux略有不同,使用upstart完成系统的启动,但表面上仍维持init程序的形式。
运行
- 跟我学Nginx+Lua开发目录贴
jinnianshilongnian
nginxlua
使用Nginx+Lua开发近一年的时间,学习和实践了一些Nginx+Lua开发的架构,为了让更多人使用Nginx+Lua架构开发,利用春节期间总结了一份基本的学习教程,希望对大家有用。也欢迎谈探讨学习一些经验。
目录
第一章 安装Nginx+Lua开发环境
第二章 Nginx+Lua开发入门
第三章 Redis/SSDB+Twemproxy安装与使用
第四章 L
- php位运算符注意事项
home198979
位运算PHP&
$a = $b = $c = 0;
$a & $b = 1;
$b | $c = 1
问a,b,c最终为多少?
当看到这题时,我犯了一个低级错误,误 以为位运算符会改变变量的值。所以得出结果是1 1 0
但是位运算符是不会改变变量的值的,例如:
$a=1;$b=2;
$a&$b;
这样a,b的值不会有任何改变
- Linux shell数组建立和使用技巧
pda158
linux
1.数组定义 [chengmo@centos5 ~]$ a=(1 2 3 4 5) [chengmo@centos5 ~]$ echo $a 1 一对括号表示是数组,数组元素用“空格”符号分割开。
2.数组读取与赋值 得到长度: [chengmo@centos5 ~]$ echo ${#a[@]} 5 用${#数组名[@或
- hotspot源码(JDK7)
ol_beta
javaHotSpotjvm
源码结构图,方便理解:
├─agent Serviceab
- Oracle基本事务和ForAll执行批量DML练习
vipbooks
oraclesql
基本事务的使用:
从账户一的余额中转100到账户二的余额中去,如果账户二不存在或账户一中的余额不足100则整笔交易回滚
select * from account;
-- 创建一张账户表
create table account(
-- 账户ID
id number(3) not null,
-- 账户名称
nam