算法设计与分析复习

[toc]

题型

  • 判断题,对了得分,错了倒扣
  • 简答题
    • 概念、什么是平衡二叉树、什么是有向连通图
    • 给一个AVL树、SPlay,画出计算过程
    • 给一个函数判断是不是递归、这个递归有没有什么问题
      • 是否少了边界条件或者递归条件
    • P是不是NP的子集、你能解释是为什么吗?分别说出他们的概念
    • 解释什么是Worse-case和平均情况、什么时候用WC什么时候用AC、AC和平均分摊之间有什么区别
    • 排序算法的basic操作
    • 给一个数据写一下最近邻
    • 给一个图写出MST
    • 红黑树的判断、构造一个红黑树(只要写过程、不用实现)
    • splay tree 的时间复杂度

Lecture 1-2

P19.Optimizing and heuristic algorithms

  • 最优解(优化算法)和启发式的区别、原因

相关知识点

  • 有关optimization的三个定义
    • optimization problem: can be described as the problem of finding the best solution from the set of all feasible solutions in some real or imagined scenario.
    • optimization model: can be described as a mathematical representation of optimization problem. It consists of parameters, decision variables, objective function and constraints.
    • optimization method: is an algorithm that is applied in order to solve an optimation problem.

最优解和启发式的区别

  • Optimizing and heuristic alogirithms
    • There are two categories of algorithms for sloving optimization problems
      • Optimizing: Guarantees to find the optimal solution
      • Heuristic: Does not guarantee to find the optimal solution, but usually generates a "good" solution within a reasonable amount of time.
    • Typically, heuristics can be stated as rules of thumb(经验法则) and they are often designed for a specific problem.

P20.Why heuristics?

为什么要选择启发式

  1. 得到最优解要消耗大量计算资源
    • An optimizing algorithm might consume too much resources.
  2. 输入可能不是很准确,而启发式算法有较强的鲁棒性,能够找到一个不错的解
    • Input to algorithm might be inaccurate and a heuristically good solution might be good enough.
  3. 启发式算法更容易理解
    • For a non-expert, it might be easier to uderstand a heuristic rather than an optimizing algorithm.

P22.Constructive heuristics(建设性启发式)

  • 均匀分布,在某个范围内等概率生成某些数
  • 步骤、过程,step0-2、了解一下流程图

定义

  • A constructive heuristic is a method that iteratively "builds up" a solution.(迭代地构建解决方案)

怎么构建

  • Assuming that a solution consists of solution components, it starts with nothing and adds one value of exactly one variable(恰好一个变量的值) in each iteration.

  • 详细描述

  • Let denote a solution to our problem

    • 对应上面的Assuming a solution consists of solution components
  • step0: Initialization: Begin with all free solution and set solution index t = 0

    • 对应上面的start with nothing
  • step1: Termination criteria: If t = n, then break with approximate optimum (近似最优)

    • 对应下方的终止条件
  • setp2: Choose a solution component and a value for that plausibly(似真的) leads to a good feasible solution at termination.

  • Set = but with fixed variable

  • Set solution index t = t+1, and go to step1

    • 选择一个解决方案组件xp,并为xp选择一个值,该值似乎可以在终止时提供一个良好的可行解决方案。
    • 对应于上面的adds one value of exactly one variable in each iteration

结束条件

  • The algorithm ends when all variables have been assigned a value.

用途

  • ... are used to generate a feasible starting solution which can be improved by other algorithm later on.

P24.Greedy algorithm

构造启发式的一种自然且常见的类型是贪婪算法

  • A natural, and common type of constructive heuristics is greedy algorithms.
    • Each variable fixings(变量固定值) is choosen as the variable that locally improve the objective most.
    • Of course, variable fixings are choosen without breaking feasibility.

P26-.Huffman’s algorithm

  • 哈夫曼编码、文字压缩

  • Huffman's algorithm - A greedy, constructive, algorithm for text compression.

  • Huffman's algorithm is a greedy algorithm that identifies the optimal code for a particular character set and text to code.(只需记住它是一种贪婪算法)

P29.Graph

图的定义

  • A graph is a set of objects that are connected to each other through links.

P31.Binary tree

什么是树

  • 两种定义方式
    • A tree is an undirected graph where each pair of vertices is connected by exactly one path.
    • A tree connected with n vertices and n-1 edges.

什么是二叉树

  • A binary tree is a rooted tree in which no node has more than two children.

P35.Tries(prefix trees)

什么是Tries

  • Character codes can be represented using a special type of tree.
  • In a tries, each node is associated with a string and each edge is labeled with a sequence of characters.
  • The root is an empty node.
  • The value of a node is concatenating the value of its parent with the character sequence on the edge connecting it with the parent.

P36.Definition - Prefix

什么是前缀、后缀

  • A prefix can be described as a starting of a word.
举例:zhuyun的前缀
zhuyun
zhuyu
zhuy
zhu
zh
z

什么是前缀码

  • No character code is a prefix of another character code. This type of encoding is called prefix code.

给出字符串、能够写出前缀后缀、注意不止一个、是有一系列的前缀(上方的举例中有)

P42-.Huffmans’s algorithm

给一个例子,然后画出过程,构建huffman

  • P43~P50中有例子

P58.Neighborhood search

用来求解背包问题(18年新题目)、把背包问题描述成数学的形式、自己写一遍算法、写出计算步骤

  • 定义邻居
    • 如果是在一维坐标轴上的实数
    • 如果是二维坐标
      • N ( \overline { x } , \overline { y } ) = \left\{ ( x , y ) \in \mathbb { R } ^ { 2 } : \sqrt { ( x - \overline { x } ) ^ { 2 } + ( x - \overline { y } ) ^ { 2 } } \leq 1 \right\}
  • 背包问题
    • Parameters:
      • n: The number of items
      • l: {1, ..., n} Index set over the n items
      • : The value of item i
      • : The weight of item i
      • W: The weight capacity of the knapsack
    • Decision variables:
      • if the item is chosen
      • if the item is not chosen
    • Objective function:
      • Maximize
    • Constraints:
  • Example:
    • Maximize:

    • Subject to:


  • 构建数学模型

    • Parameters:

      • n: 4
      • l: {1, 2, 3, 4}
      • p: {4, 10, 5, 8}
      • w: {3, 9, 4, 6}
      • W: 12
    • Decision variables:

    • Subjective function:

      • MAX
    • Constraints:

  • 求解

x(0) = [0 0 1 0]T      Z = 5

N(x(0))  [1 0 1 0]T      Z = 9

            [0 1 1 0]T      infeasible

            [0 0 0 0]T      Z = 0

            [0 0 1 1]T      Z = 13

x(1) = [0 0 1 1]T

N(x(1))  [1 0 1 1]T     infeasible

            [0 1 1 1]T      infeasible

            [0 0 0 1]T      Z = 8

            [0 0 1 0]T      Z = 5

break

x(1) is local optimal

P89.Tabu search (不确定会考)

  • 哪些要、哪些不要
x(0) = [0 0 1 0]T      Z = 5               tabu:None

N(x(0))  [1 0 1 0]T      Z = 9

            [0 1 1 0]T      infeasible

            [0 0 0 0]T      Z = 0

            [0 0 1 1]T      Z = 13

x(1) = [0 0 1 1]T                             tabu: x(0)

N(x(1))  [1 0 1 1]T     infeasible

            [0 1 1 1]T      infeasible

            [0 0 0 1]T      Z = 8

            [0 0 1 0]T      Z = 5 (不选,this is tabu)



x(2) = [0 0 0 1]                                tabu:x(1)

N(x(2))  [1 0 0 1]   Z = 12

             [0 1 0 1]   infeasible

             [0 0 1 1]   tabu

             [0 0 0 0]    Z = 0

...


P108.Recursion

定义

  • A function that is defined in terms of itself is called recursive.

  • Recursive functions require at least one base case

    • A base case is an input value for which the function can be calculated without recursion.
    • Without a base case it is not possible to terminate the calculation of a recursion function.
    • 什么是base case(考点):base case是一个(输入)值,不需要递归就可以为其计算函数。

举例

  • Example: f(x) = 2f(x -1) , where f(0) = 0 (x >= 0), f(0)=0为base case

递归的基本规则

  • Fundamental rules of recursion:
    • Base cases: There needs to be at least one base case, which can be solved whithout recursion.
    • Progress: For the cases that are solved using recursion, recursive calls must progress towards a base case.

P119.Mergesort

  • 先分解再合并排序的过程
  • 写出每步步骤

分治divide-and- conquer

  • Divide-and-conquer is an algorithm design technique based on recursion.

  • 分治是一种基于递归的算法设计技术。

  • Divide: Smaller problems are solved recursively

  • Conquer: The solutions to the original problem is found by combining the solutions to the (smaller) subproblems.

    • 原问题的解是由(较小的)子问题的解的组合得到的。

P133.Dynamic Programming

  • 动态规划找出最优解、相比贪心算法的优点

P138

  • 不选、选、画出图、动态规划要掌握该图
  • 背包问题的动态规划图

Lecture 3-4

P4-

  • 连通图、有向图、计算出度入度

P8.Cycle in directed graph

  • 回路存在即不能进行拓扑排序

P10.Connected undirected graph

  • 概念判断、什么是强连通图、连通图、判断这个图是不是强连通的、判断是不是完全图
  • 完全的无向图里面的边数的关系

P15.Tree

  • 什么是树、判断是不是树

P18.Graph representation

  • 图的两种存储方式、把选择的那一种画出来
  • 各自的优缺点
    • 矩阵索引快,但是空间消耗大
    • 链表慢,但是节省空间,没有无效存储、多次搜索(不知道是否正确具体参考ppt?)

P33.Prim’s algorithm

  • 根据这两个算法、画出MST、会画就可以了

P35.Topological ordering

  • 找出拓扑排序、并且解释为什么不能有环、彼此是彼此的依赖结点

Lecture 5-6

P2.What is complexity analysis?

  • 什么是算法复杂度

P4-5.Basic operations of an algorithm & What is a basic operation?

  • 不同算法的。。。排序中的遍历过程、merge比较

P7.Complexity as a function of the input - Examples

  • 常见算法的复杂度、最好的情况、最坏的情况、在什么情况下最好

P20.Average and Worst case analysis

  • 掌握最坏的情况、不用掌握平均的

P23.Relative growth rate of functions

  • 给出一个表达式,可以用Big O的形式表达出来、去掉常数项和低次项还有系数

P29.Example: O(n3), Ω(n3), and Θ(n3)

  • 上下界、O的上界、Ω的下界、Θ的确界

P36.P and NP

  • NP中N 的含义、NP是否等于P、一般是不等、说明原因

P46.How to show that a problem is N P complete I

  • 过于具体、可以简化

P47.How to show that a problem is N P complete II

  • 具体证明步骤、会证明
  • 把第二条分成两点

P48.Amortized analysis - Initial example

  • 只需要掌握基本概念、 a sequence of operations是关键词

P53.Amortized vs average-case analysis

  • 两者并不一样、AC是发生的概率,并不考虑多个步骤再平均

Lecture 7-8

P4.Binary tree

  • 二叉树的基本操作

P5.Binary search tree

  • 什么是balance search tree、大小关系、给出一个不平衡的->平衡

P20.Tree balance

  • 如何判断一棵树是否平衡

P29.Inserting

  • 要会操作、和splay tree 两个考一个

P30.Splay trees

  • 考步骤、会插入删除

P58.Red-black trees

  • 掌握四条定义、会判断是否是红黑树

你可能感兴趣的:(算法设计与分析复习)