笨蛋学JUC并发编程-共享模型之无锁

JUC并发编程-共享模型之无锁

  • 4.共享模型之无锁
      • 问题:保证取款方法的线程安全
    • 4.1CAS与volatile
      • 4.1.1volatile
      • 4.1.2注意
      • 4.1.3上下文切换
      • 4.1.4无锁效率高(多核CPU才能发挥优势)
      • 4.1.5CAS特点
    • 4.2原子整数
    • 4.3原子引用
      • 4.3.1安全实现-使用CAS AtomicReference
      • 4.3.2ABA问题及解决
      • 4.3.3AtomicStampedReference(维护版本号)
      • 4.3.4AtomicMarkableReference(仅维护)
    • 4.4原子数组
      • 4.4.1不安全的数组
      • 4.4.2安全的数组
    • 4.5字段更新器
    • 4.6原子累加器
    • 4.7Unsafe
      • 4.7.1案例

4.共享模型之无锁

问题:保证取款方法的线程安全

  • 线程不安全
import java.util.ArrayList;
import java.util.List;

interface Account {
    
    // 获取余额
    Integer getBalance();
    
    // 取款
    void withdraw(Integer amount);
    
    /**
    * 方法内会启动 1000 个线程,每个线程做 -10 元 的操作
    * 如果初始余额为 10000 那么正确的结果应当是 0
    */
    static void demo(Account account) {
        List<Thread> ts = new ArrayList<>();
        
        long start = System.nanoTime();
        for (int i = 0; i < 1000; i++) {
            ts.add(new Thread(() -> {
                account.withdraw(10);
            }));
        }
        ts.forEach(Thread::start);
        
        ts.forEach(t -> {
            try {
                t.join();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        });
        long end = System.nanoTime();
        
        System.out.println(account.getBalance() 
                           + " cost: " + (end-start)/1000_000 + " ms");
    }
}
-------------------------------------------------------------------------
//线程不安全
class AccountUnsafe implements Account {
    private Integer balance;
    
    public AccountUnsafe(Integer balance) {
        this.balance = balance;
    }
    
    @Override
    public Integer getBalance() {
        return balance;
    }
    
    @Override
    public void withdraw(Integer amount) {
        balance -= amount;
    }
}
  • 线程安全1
class AccountUnsafe implements Account {
    //设置余额
    private Integer balance;

    public AccountUnsafe(Integer balance) {
        this.balance = balance;
    }

    @Override
    public Integer getBalance() {
        synchronized (this){
            return this.balance;
        }

    }

    @Override
    public void withdraw(Integer amount) {
        synchronized (this){
            this.balance -= amount;
        }

    }
}

  • 无锁实现线程安全2
class AccountCas implements Account{

    private AtomicInteger balance;

    public AccountCas(int balance) {
        this.balance = new AtomicInteger(balance);
    }

    @Override
    public Integer getBalance() {
        return balance.get();
    }

    @Override
    public void withdraw(Integer amount) {
        while (true){
            //获取余额的最新值
            int prev=balance.get();

            //要修改的余额
            int next=prev-amount;

            //真正修改
            if(balance.compareAndSet(prev,next)){
                break;
            }
        }
    }
}

4.1CAS与volatile

public void withdraw(Integer amount) {
    while(true) {
        // 需要不断尝试,直到成功为止
        while (true) {
            // 获取余额的最新值
            int prev = balance.get();
            //要修改的余额
            int next = prev - amount;
            
            if (balance.compareAndSet(prev, next)) {
                break;
            }
        }
    }
}     
  • compareAndSet方法就是先比较当前线程获取的最新值和Account对象线程共享的变量值
    • 若不一致,说明Account对象的值已经被修改了,这时我们再修改就没有按照当前最新的共享变量的值来修改,就会返回false表示失败
    • 若一致,就使用next的值作为最新值,并且返回true表示成功

其实 CAS 的底层是 lock cmpxchg 指令(X86 架构),在单核 CPU 和多核 CPU 下都能够保证【比较-交换】的原子性。

  • 在多核状态下,某个核执行到带 lock 的指令时,CPU 会让总线锁住,当这个核把此指令执行完毕,再开启总线。这个过程中不会被线程的调度机制所打断,保证了多个线程对内存操作的准确性,是原子的。

4.1.1volatile

  • 获取共享变量时,为了保证该变量的可见性,需要使用 volatile 修饰。

volatile 可以用来修饰成员变量和静态成员变量,可以避免线程从自己的工作缓存中查找变量的值,必须到主存中获取它的值,线程操作 volatile 变量都是直接操作主存。即一个线程对 volatile 变量的修改,对另一个线程可见。

4.1.2注意

volatile 仅仅保证了共享变量的可见性,让其它线程能够看到最新值,但不能解决指令交错问题(不能保证原子性)
CAS 必须借助 volatile 才能读取到共享变量的最新值来实现【比较并交换】的效果

4.1.3上下文切换

  • 就是线程从一个状态转为另一个状态,就会发生上下文切换
  • 当线程发生上下文切换时,就会导致性能的效率降低

4.1.4无锁效率高(多核CPU才能发挥优势)

线程数不要超过CPU核心数,不然也会影响性能效率

  • 无锁情况下,即使重试失败,线程始终在高速运行,没有停歇,而 synchronized 会让线程在没有获得锁的时候,发生上下文切换,进入阻塞。打个比喻
  • 线程就好像高速跑道上的赛车,高速运行时,速度超快,一旦发生上下文切换,就好比赛车要减速、熄火,等被唤醒又得重新打火、启动、加速… 恢复到高速运行,代价比较大
  • 但无锁情况下,因为线程要保持运行,需要额外 CPU 的支持,CPU 在这里就好比高速跑道,没有额外的跑道,线程想高速运行也无从谈起,虽然不会进入阻塞,但由于没有分到时间片,仍然会进入可运行状态,还是会导致上下文切换。

4.1.5CAS特点

结合 CAS 和 volatile 可以实现无锁并发,适用于线程数少、多核 CPU 的场景下。

  • CAS 是基于乐观锁的思想:最乐观的估计,不怕别的线程来修改共享变量,就算改了也没关系,我吃亏点再重试
  • synchronized 是基于悲观锁的思想:最悲观的估计,得防着其它线程来修改共享变量,我上了锁你们都别想改,我改完了解开锁,你们才有机会。
  • CAS 体现的是无锁并发、无阻塞并发,请仔细体会这两句话的意思
    • 因为没有使用 synchronized,所以线程不会陷入阻塞,这是效率提升的因素之一
    • 但如果竞争激烈,可以想到重试必然频繁发生,反而效率会受影响

4.2原子整数

JUC并发包提供了:

  • AtomicBoolean
  • AtomicInteger
  • AtomicLong
AtomicInteger i = new AtomicInteger(0);

// 获取并自增(i = 0, 结果 i = 1, 返回 0),类似于 i++
System.out.println(i.getAndIncrement());

// 自增并获取(i = 1, 结果 i = 2, 返回 2),类似于 ++i
System.out.println(i.incrementAndGet());

// 自减并获取(i = 2, 结果 i = 1, 返回 1),类似于 --i
System.out.println(i.decrementAndGet());

// 获取并自减(i = 1, 结果 i = 0, 返回 1),类似于 i--
System.out.println(i.getAndDecrement());

// 获取并加值(i = 0, 结果 i = 5, 返回 0)
System.out.println(i.getAndAdd(5));

// 加值并获取(i = 5, 结果 i = 0, 返回 0)
System.out.println(i.addAndGet(-5));

// 获取并更新(i = 0, p 为 i 的当前值, 结果 i = -2, 返回 0)
// 其中函数中的操作能保证原子,但函数需要无副作用
System.out.println(i.getAndUpdate(p -> p - 2));

// 更新并获取(i = -2, p 为 i 的当前值, 结果 i = 0, 返回 0)
// 其中函数中的操作能保证原子,但函数需要无副作用
System.out.println(i.updateAndGet(p -> p + 2));

// 获取并计算(i = 0, p 为 i 的当前值, x 为参数1, 结果 i = 10, 返回 0)
// 其中函数中的操作能保证原子,但函数需要无副作用
// getAndUpdate 如果在 lambda 中引用了外部的局部变量,要保证该局部变量是 final 的
// getAndAccumulate 可以通过 参数1 来引用外部的局部变量,但因为其不在 lambda 中因此不必是 final
System.out.println(i.getAndAccumulate(10, (p, x) -> p + x));

// 计算并获取(i = 10, p 为 i 的当前值, x 为参数1, 结果 i = 0, 返回 0)
// 其中函数中的操作能保证原子,但函数需要无副作用
System.out.println(i.accumulateAndGet(-10, (p, x) -> p + x));

4.3原子引用

原子引用类型

  • AtomicReference
  • AtomicMarkableReference
  • AtomicStampedReference
public interface DecimalAccount {
    // 获取余额
    BigDecimal getBalance();
    
    // 取款
    void withdraw(BigDecimal amount);
    
    /**
    * 方法内会启动 1000 个线程,每个线程做 -10 元 的操作
    * 如果初始余额为 10000 那么正确的结果应当是 0
    */
    static void demo(DecimalAccount account) {
        List<Thread> ts = new ArrayList<>();
        for (int i = 0; i < 1000; i++) {
            ts.add(new Thread(() -> {
                account.withdraw(BigDecimal.TEN);
            }));
        }
        ts.forEach(Thread::start);
        
        ts.forEach(t -> {
            try {
                t.join();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        });
        System.out.println(account.getBalance());
    }
    
}

4.3.1安全实现-使用CAS AtomicReference

class DecimalAccountSafeCas implements DecimalAccount {
    AtomicReference<BigDecimal> balance;
    
    public DecimalAccountSafeCas(BigDecimal balance) {
        balance = new AtomicReference<>(balance);
    }
    
    @Override
    public BigDecimal getBalance() {
        return balance.get();
    }
    
    @Override
    public void withdraw(BigDecimal amount) {
        while (true) {
            //获取最新的值
            BigDecimal prev = balance.get();
            //获取取款金额,使用subtract方法减
            BigDecimal next = prev.subtract(amount);
            //获取最新的值跟线程共享变量最新的值是否一致
            if (balance.compareAndSet(prev, next)) {
                break;
            }
        }
    }
    
}

4.3.2ABA问题及解决

static AtomicReference<String> ref = new AtomicReference<>("A");

public static void main(String[] args) throws InterruptedException {
    log.debug("main start...");
    // 获取值 A
    // 这个共享变量被它线程修改过?
    String prev = ref.get();
    
    other();
    
    sleep(1);
    // 尝试改为 C
    log.debug("change A->C {}", ref.compareAndSet(prev, "C"));
}

private static void other() {
    
    new Thread(() -> {
        log.debug("change A->B {}", ref.compareAndSet(ref.get(), "B"));
    }, "t1").start();
    
    sleep(0.5);
    
    new Thread(() -> {
        log.debug("change B->A {}", ref.compareAndSet(ref.get(), "A"));
    }, "t2").start();
    
}
  • 主线程仅能判断出共享变量的值与最初值 A 是否相同,不能感知到这种从 A 改为 B 又改回 A 的情况,如果主线程希望:只要有其它线程【动过了】共享变量,那么自己的 cas 就算失败,这时,仅比较值是不够的,需要再加一个版本号

4.3.3AtomicStampedReference(维护版本号)

  • 通过设置的版本号来检查其他线程是否有修改
static AtomicStampedReference<String> ref = new AtomicStampedReference<>("A", 0);

public static void main(String[] args) throws InterruptedException {
    log.debug("main start...");
    // 获取值 A
    String prev = ref.getReference();
    // 获取版本号
    int stamp = ref.getStamp();
    log.debug("版本 {}", stamp);
    // 如果中间有其它线程干扰,发生了 ABA 现象
    other();
    sleep(1);
    // 尝试改为 C
    log.debug("change A->C {}", ref.compareAndSet(prev, "C", stamp, stamp + 1));
}

private static void other() {
    new Thread(() -> {
        log.debug("change A->B {}", ref.compareAndSet(ref.getReference(), "B", 
                                                      ref.getStamp(), ref.getStamp() + 1));
        log.debug("更新版本为 {}", ref.getStamp());
    }, "t1").start();
    
    sleep(1);
    
    new Thread(() -> {
        log.debug("change B->A {}", ref.compareAndSet(ref.getReference(), "A", 
                                                      ref.getStamp(), ref.getStamp() + 1));
        log.debug("更新版本为 {}", ref.getStamp());
    }, "t2").start();
}

4.3.4AtomicMarkableReference(仅维护)

  • 通过布尔值来判断是否被修改过
public static void main(String[] args) throws InterruptedException {
        GarbageBag bag = new GarbageBag("装满了垃圾");
        // 参数2 mark 可以看作一个标记,表示垃圾袋满了
        AtomicMarkableReference<GarbageBag> ref = new AtomicMarkableReference<>(bag, true);
        
        log.debug("主线程 start...");
        GarbageBag prev = ref.getReference();
        log.debug(prev.toString());
        
        new Thread(() -> {
            log.debug("打扫卫生的线程 start...");
            bag.setDesc("空垃圾袋");
            while (!ref.compareAndSet(bag, bag, true, false)) {}
            log.debug(bag.toString());
        }).start();
        
        Thread.sleep(1000);
        log.debug("主线程想换一只新垃圾袋?");
        boolean success = ref.compareAndSet(prev, new GarbageBag("空垃圾袋"), true, false);
        log.debug("换了么?" + success);
        
        log.debug(ref.getReference().toString());
    }

4.4原子数组

  • AtomicIntegerArray
  • AtomicLongArray
  • AtomicReferenceArray
/**
    参数1,提供数组、可以是线程不安全数组或线程安全数组
    参数2,获取数组长度的方法
    参数3,自增方法,回传 array, index
    参数4,打印数组的方法
*/
// supplier 提供者 无中生有 ()->结果
// function 函数 一个参数一个结果 (参数)->结果 , BiFunction (参数1,参数2)->结果
// consumer 消费者 一个参数没结果 (参数)->void, BiConsumer (参数1,参数2)->
private static <T> void demo(
    Supplier<T> arraySupplier,
    Function<T, Integer> lengthFun,
    BiConsumer<T, Integer> putConsumer,
    Consumer<T> printConsumer ) {
    
    List<Thread> ts = new ArrayList<>();
    T array = arraySupplier.get();
    int length = lengthFun.apply(array);
    for (int i = 0; i < length; i++) {
        // 每个线程对数组作 10000 次操作
        ts.add(new Thread(() -> {
            for (int j = 0; j < 10000; j++) {
                putConsumer.accept(array, j%length);
            }
        }));
    }
    ts.forEach(t -> t.start()); // 启动所有线程
    
    ts.forEach(t -> {
        try {
            t.join();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }); // 等所有线程结束
    printConsumer.accept(array);
}

4.4.1不安全的数组

demo(
    ()->new int[10],
    (array)->array.length,
    (array, index) -> array[index]++,
    array-> System.out.println(Arrays.toString(array))
);

4.4.2安全的数组

demo(
    ()-> new AtomicIntegerArray(10),
    (array) -> array.length(),
    (array, index) -> array.getAndIncrement(index),
    array -> System.out.println(array)
);

4.5字段更新器

  • AtomicReferenceFieldUpdater // 域字段 (只要是引用类型的就可以使用)
  • AtomicIntegerFieldUpdater (只要是整型类型的就可以使用)
  • AtomicLongFieldUpdater (只要是长整型类型的就可以使用)

利}用字段更新器,可以针对对象的某个域(Field)进行原子操作,只能配合 volatile 修饰的字段使用,
否则会出现异常 Exception in thread "main" java.lang.IllegalArgumentException: Must be volatile type


public static void main(String[] args) throws InterruptedException {
          Student stu = new Student();
           AtomicReferenceFieldUpdater updater = AtomicReferenceFieldUpdater.newUpdater(Student.class, String.class, "name");

            updater.compareAndSet(stu, null, "张三");
}

class Student{
    volatile String name;

    @Override
    public String toString() {
        return "Student{" +
                "name='" + name + '\'' +
                '}';
    }
}

4.6原子累加器

private static <T> void demo(Supplier<T> adderSupplier, Consumer<T> action) {
    T adder = adderSupplier.get();
    
    long start = System.nanoTime();
    
    List<Thread> ts = new ArrayList<>();
    // 4 个线程,每人累加 50 万
    for (int i = 0; i < 40; i++) {
        ts.add(new Thread(() -> {
            for (int j = 0; j < 500000; j++) {
                action.accept(adder);
            }
        }));
    }
    ts.forEach(t -> t.start());
    
    ts.forEach(t -> {
        try {
            t.join();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    });
    long end = System.nanoTime();
    System.out.println(adder + " cost:" + (end - start)/1000_000);
}
  • LongAdder和AtomicLong的使用对比
  • LongAdder的效率很显然是要大于AtomicLong的
for (int i = 0; i < 5; i++) {
    demo(() -> new LongAdder(), adder -> adder.increment());
}
for (int i = 0; i < 5; i++) {
    demo(() -> new AtomicLong(), adder -> adder.getAndIncrement());
}

4.7Unsafe

  • Unsafe 对象提供了非常底层的,操作内存、线程的方法,Unsafe 对象不能直接调用,只能通过反射获得

    public class UnsafeAccessor {
        static Unsafe unsafe;
        static {
            try { 
                Field theUnsafe = Unsafe.class.getDeclaredField("theUnsafe");
                theUnsafe.setAccessible(true);
                unsafe = (Unsafe) theUnsafe.get(null);
            } catch (NoSuchFieldException | IllegalAccessException e) {
                throw new Error(e);
            }
        }
        static Unsafe getUnsafe() {
            return unsafe;
        }
    }
    

4.7.1案例

public static void main(String[] args) throws NoSuchFieldException, IllegalAccessException {

       Field theUnsafe = Unsafe.class.getDeclaredField("theUnsafe");
        theUnsafe.setAccessible(true);
        Unsafe unsafe = (Unsafe) theUnsafe.get(null);

        System.out.println(unsafe);

        // 1. 获取域的偏移地址
        long idOffset = unsafe.objectFieldOffset(Teacher.class.getDeclaredField("id"));
        long nameOffset = unsafe.objectFieldOffset(Teacher.class.getDeclaredField("name"));

        Teacher t = new Teacher();
        System.out.println(t);

        // 2. 执行 cas 操作
        unsafe.compareAndSwapInt(t, idOffset, 0, 1);
        unsafe.compareAndSwapObject(t, nameOffset, null, "张三");

        // 3. 验证
        System.out.println(t);
}

@Data
class Teacher {
    volatile int id;
    volatile String name;
}

你可能感兴趣的:(笨蛋学JUC,java,juc)