数组(Array):是多个相同类型数据按一定顺序排列的集合,并使用一个名字命名,并通过编号的方式对这些数据进行统一管理。
数组中的概念:
– 数组名
– 下标(或索引)
– 元素
– 数组的长度
数组的特点:
• 数组本身是引用数据类型,而数组中的元素可以是任何数据类型,包括基本数据类型和引用数据类型。
• 创建数组对象会在内存中开辟一整块连续的空间。占据的空间的大小,取决于数组的长度和数组中元素的类型。
• 数组中的元素在内存中是依次紧密排列的,有序的。
• 数组一旦初始化完成,其长度就是确定的。数组的长度一旦确定,就不能修改。
• 我们可以直接通过下标(或索引)的方式调用指定位置的元素,速度很快。
• 数组名中引用的是这块连续空间的首地址。
数组的分类
1、按照元素类型分:
• 基本数据类型元素的数组:每个元素位置存储基本数据类型的值
• 引用数据类型元素的数组:每个元素位置存储对象(本质是存储对象的首地址)(在面向对象部分讲解)
2、按照维度分:
• 一维数组:存储一组数据
• 二维数组:存储多组数据,相当于二维表,一行代表一组数据,只是这里的二维表每一行长度不要求一样。
格式:
//推荐
元素的数据类型[] 一维数组的名称;
//不推荐
元素的数据类型 一维数组名[];
举例:
int[] arr;
int arr1[];
double[] arr2;
String[] arr3; //引用类型变量数组
数组的声明,需要明确:
(1)数组的维度:在Java中数组的符号是[],[]表示一维,[][]表示二维。
(2)数组的元素类型:即创建的数组容器可以存储什么数据类型的数据。元素的类型可以是任意的Java的数据类型。例如:int、String、Student等。
(3)数组名:就是代表某个数组的标识符,数组名其实也是变量名,按照变量的命名规范来命名。数组名是个引用数据类型的变量,因为它代表一组数据。
举例:
public class ArrayTest1 {
public static void main(String[] args) {
//比如,要存储一个小组的成绩
int[] scores;
int grades[];
// System.out.println(scores);//未初始化不能使用
//比如,要存储一组字母
char[] letters;
//比如,要存储一组姓名
String[] names;
//比如,要存储一组价格
double[] prices;
}
}
注意:Java语言中声明数组时不能指定其长度(数组中元素的个数)。 例如: int a[5]; //非法
• 如果数组变量的初始化和数组元素的赋值操作同时进行,那就称为静态初始化。
• 静态初始化,本质是用静态数据(编译时已知)为数组初始化。此时数组的长度由静态数据的个数决定。
• 一维数组声明和静态初始化格式1:
数据类型[] 数组名 = new 数据类型[]{元素1,元素2,元素3,...};
或
数据类型[] 数组名;
数组名 = new 数据类型[]{元素1,元素2,元素3,...};
– new:关键字,创建数组使用的关键字。因为数组本身是引用数据类型,所以要用new创建数组实体。
例如,定义存储1,2,3,4,5整数的数组容器。
int[] arr = new int[]{1,2,3,4,5};//正确
//或
int[] arr;
arr = new int[]{1,2,3,4,5};//正确
• 一维数组声明和静态初始化格式2:
数据类型[] 数组名 = {元素1,元素2,元素3...};//必须在一个语句中完成,不能分成两个语句写
例如,定义存储1,2,3,4,5整数的数组容器
int[] arr = {1,2,3,4,5};//正确
int[] arr;
arr = {1,2,3,4,5};//错误
举例:
public class ArrayTest2 {
public static void main(String[] args) {
int[] arr = {1,2,3,4,5};//右边不需要写new int[]
int[] nums;
nums = new int[]{10,20,30,40}; //声明和初始化在两个语句完成,就不能使用new int[]
char[] word = {'h','e','l','l','o'};
String[] heros = {"袁隆平","邓稼先","钱学森"};
System.out.println("arr数组:" + arr);//arr数组:[I@1b6d3586
System.out.println("nums数组:" + nums);//nums数组:[I@4554617c
System.out.println("word数组:" + word);//word数组:[C@74a14482
System.out.println("heros数组:" + heros);//heros数组:[Ljava.lang.String;@1540e19d
}
}
数组变量的初始化和数组元素的赋值操作分开进行,即为动态初始化。
动态初始化中,只确定了元素的个数(即数组的长度),而元素值此时只是默认值,还并未真正赋自己期望的值。真正期望的数据需要后续单独一个一个赋值。
格式:
数组存储的元素的数据类型[] 数组名字 = new 数组存储的元素的数据类型[长度];
或
数组存储的数据类型[] 数组名字;
数组名字 = new 数组存储的数据类型[长度];
[长度]:数组的长度,表示数组容器中可以最多存储多少个元素。
注意:数组有定长特性,长度一旦指定,不可更改。和水杯道理相同,买了一个2升的水杯,总容量就是2升是固定的。
举例1:正确写法
int[] arr = new int[5];
int[] arr;
arr = new int[5];
举例2:错误写法
int[] arr = new int[5]{1,2,3,4,5};//错误的,后面有{}指定元素列表,就不需要在[]中指定元素个数了。
数组的元素总个数,即数组的长度
每个数组都有一个属性length指明它的长度,例如:arr.length 指明数组arr的长度(即元素个数)
每个数组都具有长度,而且一旦初始化,其长度就是确定,且是不可变的。
如何表示数组中的一个元素?
每一个存储到数组的元素,都会自动的拥有一个编号,从0开始,这个自动编号称为数组索引(index)或下标,可以通过数组的索引/下标访问到数组中的元素。
数组名[索引/下标]
数组的下标范围?
Java中数组的下标从[0]开始,下标范围是[0, 数组的长度-1],即[0, 数组名.length-1]
数组元素下标可以是整型常量或整型表达式。如a[3] , b[i] , c[6*i];
举例
public class ArrayTest3 {
public static void main(String[] args) {
int[] arr = {1,2,3,4,5};
System.out.println("arr数组的长度:" + arr.length);
System.out.println("arr数组的第1个元素:" + arr[0]);//下标从0开始
System.out.println("arr数组的第2个元素:" + arr[1]);
System.out.println("arr数组的第3个元素:" + arr[2]);
System.out.println("arr数组的第4个元素:" + arr[3]);
System.out.println("arr数组的第5个元素:" + arr[4]);
//修改第1个元素的值
//此处arr[0]相当于一个int类型的变量
arr[0] = 100;
System.out.println("arr数组的第1个元素:" + arr[0]);
}
}
将数组中的每个元素分别获取出来,就是遍历。for循环与数组的遍历是绝配。
举例1
public class ArrayTest4 {
public static void main(String[] args) {
int[] arr = new int[]{1,2,3,4,5};
//打印数组的属性,输出结果是5
System.out.println("数组的长度:" + arr.length);
//遍历输出数组中的元素
System.out.println("数组的元素有:");
for(int i=0; i
举例2
public class ArrayTest5 {
public static void main(String[] args) {
int[] arr = new int[5];
System.out.println("arr数组的长度:" + arr.length);
System.out.print("存储数据到arr数组之前:[");
for (int i = 0; i < arr.length; i++) {
if(i==0){
System.out.print(arr[i]);
}else{
System.out.print("," + arr[i]);
}
}
System.out.println("]");
//初始化
/*
arr[0] = 2;
arr[1] = 4;
arr[2] = 6;
arr[3] = 8;
arr[4] = 10;
*/
for (int i = 0; i < arr.length; i++) {
arr[i] = (i+1) * 2;
}
System.out.print("存储数据到arr数组之后:[");
for (int i = 0; i < arr.length; i++) {
if(i==0){
System.out.print(arr[i]);
}else{
System.out.print("," + arr[i]);
}
}
System.out.println("]");
}
}
数组是引用类型,当我们使用动态初始化方式创建数组时,元素值只是默认值。例如:
public class ArrayTest6 {
public static void main(String argv[]){
int a[]= new int[5];
System.out.println(a[3]); //a[3]的默认值为0
}
}
对于基本数据类型而言,默认初始化值各有不同。
对于引用数据类型而言,默认初始化值为null(注意与0不同!)
public class ArrayTest7 {
public static void main(String[] args) {
//存储26个字母
char[] letters = new char[26];
System.out.println("letters数组的长度:" + letters.length);
System.out.print("存储字母到letters数组之前:[");
for (int i = 0; i < letters.length; i++) {
if(i==0){
System.out.print(letters[i]);
}else{
System.out.print("," + letters[i]);
}
}
System.out.println("]");
//存储5个姓名
String[] names = new String[5];
System.out.println("names数组的长度:" + names.length);
System.out.print("存储姓名到names数组之前:[");
for (int i = 0; i < names.length; i++) {
if(i==0){
System.out.print(names[i]);
}else{
System.out.print("," + names[i]);
}
}
System.out.println("]");
}
}
为了提高运算效率,就对空间进行了不同区域的划分,因为每一片区域都有特定的处理数据方式和内存管理方式。
区域名称 作用
虚拟机栈 用于存储正在执行的每个Java方法的局部变量表等。局部变量表存放了编译期可知长度
的各种基本数据类型、对象引用,方法执行完,自动释放。
堆内存 存储对象(包括数组对象),new来创建的,都存储在堆内存。
方法区 存储已被虚拟机加载的类信息、常量、(静态变量)、即时编译器编译后的代码等数据。
本地方法栈 当程序中调用了native的本地方法时,本地方法执行期间的内存区域
程序计数器 程序计数器是CPU中的寄存器,它包含每一个线程下一条要执行的指令的地址
1、一个一维数组内存图
public static void main(String[] args) {
int[] arr = new int[3];
System.out.println(arr);//[I@5f150435
}
2、数组下标为什么是0开始
因为第一个元素距离数组首地址间隔0个单元格。
3、两个一维数组内存图
两个数组独立
public static void main(String[] args) {
int[] arr = new int[3];
int[] arr2 = new int[2];
System.out.println(arr);
System.out.println(arr2);
}
两个数组变量本质上代表同一个数组。
public static void main(String[] args) {
// 定义数组,存储3个元素
int[] arr = new int[3];
//数组索引进行赋值
arr[0] = 5;
arr[1] = 6;
arr[2] = 7;
//输出3个索引上的元素值
System.out.println(arr[0]);
System.out.println(arr[1]);
System.out.println(arr[2]);
//定义数组变量arr2,将arr的地址赋值给arr2
int[] arr2 = arr;
arr2[1] = 9;
System.out.println(arr[1]);
}
一维数组的应用
案例1:升景坊单间短期出租4个月,550元/月(水电煤公摊,网费35元/月),空调、卫生间、厨房齐全。屋内均是IT行业人士,喜欢安静。所以要求来租者最好是同行或者刚毕业的年轻人,爱干净、安静。
public class ArrayTest {
public static void main(String[] args) {
int[] arr = new int[]{8,2,1,0,3};
int[] index = new int[]{2,0,3,2,4,0,1,3,2,3,3};
String tel = "";
for(int i = 0;i < index.length;i++){
tel += arr[index[i]];
}
System.out.println("联系方式:" + tel);
}
}
案例2:输出英文星期几
用一个数组,保存星期一到星期天的7个英语单词,从键盘输入1-7,显示对应的单词 {“Monday”,“Tuesday”,“Wednesday”,“Thursday”,“Friday”,“Saturday”,“Sunday”}
import java.util.Scanner;
public class WeekArrayTest {
public static void main(String[] args) {
//1. 声明并初始化星期的数组
String[] weeks = {"Monday","Tuesday","Wednesday","Thursday","Friday","Saturday","Sunday"};
//2. 使用Scanner从键盘获取1-7范围的整数
Scanner scanner = new Scanner(System.in);
System.out.println("请输入[1-7]范围的整数:");
int number = scanner.nextInt();
if(number < 1 || number > 7){
System.out.println("你输入的输入非法");
}else{
//3. 根据输入的整数,到数组中相应的索引位置获取指定的元素(即:星期几)
System.out.println("对应的星期为:" + weeks[number - 1]);
}
scanner.close();
}
}
案例3:从键盘读入学生成绩,找出最高分,并输出学生成绩等级。
• 成绩>=最高分-10 等级为’A’
• 成绩>=最高分-20 等级为’B’
• 成绩>=最高分-30 等级为’C’
• 其余 等级为’D’
提示:先读入学生人数,根据人数创建int数组,存放学生成绩。
public class ScoreTest1 {
public static void main(String[] args) {
//1. 根据提示,获取学生人数
System.out.print("请输入学生人数:");
Scanner scanner = new Scanner(System.in);
int count = scanner.nextInt();
//2. 根据学生人数,创建指定长度的数组 (使用动态初始化)
int[] scores = new int[count];
//3. 使用循环,依次给数组的元素赋值
int maxScore = 0; //记录最高分
System.out.println("请输入" + count + "个成绩");
for (int i = 0; i < scores.length; i++) {
scores[i] = scanner.nextInt();
//4. 获取数组中元素的最大值,即为最高分
if(maxScore < scores[i]){
maxScore = scores[i];
}
}
System.out.println("最高分是:" + maxScore);
//5. 遍历数组元素,输出各自的分数,并根据其分数与最高分的差值,获取各自的等级
char grade;
for (int i = 0; i < scores.length; i++) {
if(scores[i] >= maxScore - 10){
grade = 'A';
}else if(scores[i] >= maxScore - 20){
grade = 'B';
}else if(scores[i] >= maxScore - 30){
grade = 'C';
}else{
grade = 'D';
}
System.out.println("student " + i + " socre is " + scores[i] + ", grade is " + grade);
}
//关闭资源
scanner.close();
}
}
Java 语言里提供了支持多维数组的语法。
如果说可以把一维数组当成几何中的线性图形,那么二维数组就相当于是一个表格,像Excel中的表格、围棋棋盘一样。
应用举例1:
某公司2022年全年各个月份的销售额进行登记。按月份存储,可以使用一维数组。如下:
int[] monthData = new int[]{23,43,22,34,55,65,44,67,45,78,67,66};
如果改写为按季度为单位存储怎么办呢?
int[][] quarterData = new int[][]{{23,43,22},{34,55,65},{44,67,45},{78,67,66}};
应用举例2:
高一年级三个班级均由多个学生姓名构成一个个数组。如下:
String[] class1 = new String[]{"段誉","令狐冲","任我行"};
String[] class2 = new String[]{"张三丰","周芷若"};
String[] class3 = new String[]{"赵敏","张无忌","韦小宝","杨过"};
那从整个年级看,我们可以声明一个二维数组。如下:
String[][] grade = new String[][]{{"段誉","令狐冲","任我行"},{"张三丰","周芷若"},{"赵敏","张无忌","韦小宝","杨过"}};
二维数组声明的语法格式:
//推荐
元素的数据类型[][] 二维数组的名称;
//不推荐
元素的数据类型 二维数组名[][];
//不推荐
元素的数据类型[] 二维数组名[];
例如:
public class Test20TwoDimensionalArrayDefine {
public static void main(String[] args) {
//存储多组成绩
int[][] grades;
//存储多组姓名
String[][] names;
}
}
面试:
int[] x, y[];
//x是一维数组,y是二维数组
格式:
int[][] arr = new int[][]{{3,8,2},{2,7},{9,0,1,6}};
定义一个名称为arr的二维数组,二维数组中有三个一维数组
• 每一个一维数组中具体元素也都已初始化
– 第一个一维数组 arr[0] = {3,8,2};
– 第二个一维数组 arr[1] = {2,7};
– 第三个一维数组 arr[2] = {9,0,1,6};
• 第三个一维数组的长度表示方式:arr[2].length;
• 注意特殊写法情况:int[] x,y[]; x是一维数组,y是二维数组。
举例1:
int[][] arr = {{1,2,3},{4,5,6},{7,8,9,10}};//声明与初始化必须在一句完成
int[][] arr = new int[][]{{1,2,3},{4,5,6},{7,8,9,10}};
int[][] arr;
arr = new int[][]{{1,2,3},{4,5,6},{7,8,9,10}};
arr = new int[3][3]{{1,2,3},{4,5,6},{7,8,9,10}};//错误,静态初始化右边new 数据类型[][]中不能写数字
举例2:
public class TwoDimensionalArrayInitialize {
public static void main(String[] args) {
//存储多组成绩
int[][] grades = {
{89,75,99,100},
{88,96,78,63,100,86},
{56,63,58},
{99,66,77,88}
};
//存储多组姓名
String[][] names = {
{"张三","李四", "王五", "赵六"},
{"刘备","关羽","张飞","诸葛亮","赵云","马超"},
{"曹丕","曹植","曹冲"},
{"孙权","周瑜","鲁肃","黄盖"}
};
}
}
如果二维数组的每一个数据,甚至是每一行的列数,需要后期单独确定,那么就只能使用动态初始化方式了。动态初始化方式分为两种格式:
格式1:规则二维表:每一行的列数是相同的
//(1)确定行数和列数
元素的数据类型[][] 二维数组名 = new 元素的数据类型[m][n];
//其中,m:表示这个二维数组有多少个一维数组。或者说一共二维表有几行
//其中,n:表示每一个一维数组的元素有多少个。或者说每一行共有一个单元格
//此时创建完数组,行数、列数确定,而且元素也都有默认值
//(2)再为元素赋新值
二维数组名[行下标][列下标] = 值;
举例:
int[][] arr = new int[3][2];
//(1)先确定总行数
元素的数据类型[][] 二维数组名 = new 元素的数据类型[总行数][];
//此时只是确定了总行数,每一行里面现在是null
//(2)再确定每一行的列数,创建每一行的一维数组
二维数组名[行下标] = new 元素的数据类型[该行的总列数];
//此时已经new完的行的元素就有默认值了,没有new的行还是null
//(3)再为元素赋值
二维数组名[行下标][列下标] = 值;
举例:
int[][] arr = new int[3][];
/*
1
2 2
3 3 3
4 4 4 4
5 5 5 5 5
*/
public class Test25DifferentElementCount {
public static void main(String[] args){
//1、声明一个二维数组,并且确定行数
//因为每一行的列数不同,这里无法直接确定列数
int[][] arr = new int[5][];
//2、确定每一行的列数
for(int i=0; i
二维数组的长度/行数:二维数组名.length
二维数组的某一行:二维数组名[行下标],此时相当于获取其中一组数据。它本质上是一个一维数组。行下标的范围:[0, 二维数组名.length-1]。此时把二维数组看成一维数组的话,元素是行对象。
某一行的列数:二维数组名[行下标].length,因为二维数组的每一行是一个一维数组。
某一个元素:二维数组名[行下标][列下标],即先确定行/组,再确定列。
public class Test22TwoDimensionalArrayUse {
public static void main(String[] args){
//存储3个小组的学员的成绩,分开存储,使用二维数组。
/*
int[][] scores1;
int scores2[][];
int[] scores3[];*/
int[][] scores = {
{85,96,85,75},
{99,96,74,72,75},
{52,42,56,75}
};
System.out.println(scores);//[[I@15db9742
System.out.println("一共有" + scores.length +"组成绩.");
//[[:代表二维数组,I代表元素类型是int
System.out.println(scores[0]);//[I@6d06d69c
//[:代表一维数组,I代表元素类型是int
System.out.println(scores[1]);//[I@7852e922
System.out.println(scores[2]);//[I@4e25154f
//System.out.println(scores[3]);//ArrayIndexOutOfBoundsException: 3
System.out.println("第1组有" + scores[0].length +"个学员.");
System.out.println("第2组有" + scores[1].length +"个学员.");
System.out.println("第3组有" + scores[2].length +"个学员.");
System.out.println("第1组的每一个学员成绩如下:");
//第一行的元素
System.out.println(scores[0][0]);//85
System.out.println(scores[0][1]);//96
System.out.println(scores[0][2]);//85
System.out.println(scores[0][3]);//75
//System.out.println(scores[0][4]);//java.lang.ArrayIndexOutOfBoundsException: 4
}
}
格式:
for(int i=0; i<二维数组名.length; i++){ //二维数组对象.length
for(int j=0; j<二维数组名[i].length; j++){//二维数组行对象.length
System.out.print(二维数组名[i][j]);
}
System.out.println();
}
举例:
public class Test23TwoDimensionalArrayIterate {
public static void main(String[] args) {
//存储3个小组的学员的成绩,分开存储,使用二维数组。
int[][] scores = {
{85,96,85,75},
{99,96,74,72,75},
{52,42,56,75}
};
System.out.println("一共有" + scores.length +"组成绩.");
for (int i = 0; i < scores.length; i++) {
System.out.print("第" + (i+1) +"组有" + scores[i].length + "个学员,成绩如下:");
for (int j = 0; j < scores[i].length; j++) {
System.out.print(scores[i][j]+"\t");
}
System.out.println();
}
}
}
二维数组本质上是元素类型是一维数组的一维数组。
int[][] arr = {
{1},
{2,2},
{3,3,3},
{4,4,4,4},
{5,5,5,5,5}
};
//1、声明二维数组,并确定行数和列数
int[][] arr = new int[4][5];
//2、确定元素的值
for (int i = 0; i < arr.length; i++) {
for (int j = 0; j < arr.length; j++) {
arr[i][j] = i + 1;
}
}
//1、声明一个二维数组,并且确定行数
//因为每一行的列数不同,这里无法直接确定列数
int[][] arr = new int[5][];
//2、确定每一行的列数
for(int i=0; i
5.6 应用举例
使用二维数组打印一个 10 行杨辉三角。
提示:
public class YangHuiTest {
public static void main(String[] args) {
//1. 动态初始化的方式创建二维数组
int[][] yangHui = new int[10][];
for (int i = 0; i < yangHui.length; i++) {
yangHui[i] = new int[i + 1];
//2. 给数组元素赋值
// 2.1 给外层数组元素中的首元素和末元素赋值
yangHui[i][0] = yangHui[i][i] = 1;
//2.2 给外层数组元素中的非首元素和非末元素赋值(难)
//if(i > 1){ //从 i == 2 开始执行
for(int j = 1;j < yangHui[i].length - 1;j++){ //非首元素和非末元素的角标范围
yangHui[i][j] = yangHui[i-1][j-1] + yangHui[i-1][j];
}
//}
}
//3. 遍历二维数组
for (int i = 0; i < yangHui.length; i++) {
for (int j = 0; j < yangHui[i].length; j++) {
System.out.print(yangHui[i][j] + "\t");
}
System.out.println();
}
}
}
这里的特征值涉及到:平均值、最大值、最小值、总和等
举例1:数组统计:求总和、均值
public class TestArrayElementSum {
public static void main(String[] args) {
int[] arr = {4,5,6,1,9};
//求总和、均值
int sum = 0;//因为0加上任何数都不影响结果
for(int i=0; i
举例2:求数组元素的总乘积
public class TestArrayElementMul {
public static void main(String[] args) {
int[] arr = {4,5,6,1,9};
//求总乘积
long result = 1;//因为1乘以任何数都不影响结果
for(int i=0; i
举例3:求数组元素中偶数的个数
public class TestArrayElementEvenCount {
public static void main(String[] args) {
int[] arr = {4,5,6,1,9};
//统计偶数个数
int evenCount = 0;
for(int i=0; i
举例4:求数组元素的最大值
public class TestArrayMax {
public static void main(String[] args) {
int[] arr = {4,5,6,1,9};
//找最大值
int max = arr[0];
for(int i=1; i max){
max = arr[i];
}
}
System.out.println("max = " + max);
}
}
举例5:找最值及其第一次出现的下标
public class TestMaxIndex {
public static void main(String[] args) {
int[] arr = {4,5,6,1,9};
//找最大值以及第一个最大值下标
int max = arr[0];
int index = 0;
for(int i=1; i max){
max = arr[i];
index = i;
}
}
System.out.println("max = " + max);
System.out.println("index = " + index);
}
}
举例6:找最值及其所有最值的下标
public class Test13AllMaxIndex {
public static void main(String[] args) {
int[] arr = {4,5,6,1,9,9,3};
//找最大值
int max = arr[0];
for(int i=1; i max){
max = arr[i];
}
}
System.out.println("最大值是:" + max);
System.out.print("最大值的下标有:");
//遍历数组,看哪些元素和最大值是一样的
for(int i=0; i max){
max = arr[i];
index = i + "";
}else if(arr[i] == max){
index += "," + i;
}
}
System.out.println("最大值是" + max);
System.out.println("最大值的下标是[" + index+"]");
}
}
举例7(难):输入一个整形数组,数组里有正数也有负数。数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和。求所有子数组的和的最大值。要求时间复杂度为O(n)。 例如:输入的数组为1, -2, 3, -10, -4, 7, 2, -5,和最大的子数组为3, 10, -4, 7, 2,因此输出为该子数组的和18。
public class Test5 {
public static void main(String[] args) {
int[] arr = new int[]{1, -2, 3, 10, -4, 7, 2, -5};
int i = getGreatestSum(arr);
System.out.println(i);
}
public static int getGreatestSum(int[] arr){
int greatestSum = 0;
if(arr == null || arr.length == 0){
return 0;
}
int temp = greatestSum;
for(int i = 0;i < arr.length;i++){
temp += arr[i];
if(temp < 0){
temp = 0;
}
if(temp > greatestSum){
greatestSum = temp;
}
}
if(greatestSum == 0){
greatestSum = arr[0];
for(int i = 1;i < arr.length;i++){
if(greatestSum < arr[i]){
greatestSum = arr[i];
}
}
}
return greatestSum;
}
}
举例8:评委打分
分析以下需求,并用代码实现:
(1)在编程竞赛中,有10位评委为参赛的选手打分,分数分别为:5,4,6,8,9,0,1,2,7,3
(2)求选手的最后得分(去掉一个最高分和一个最低分后其余8位评委打分的平均值)
public class ArrayExer {
public static void main(String[] args) {
int[] scores = {5,4,6,8,9,0,1,2,7,3};
int max = scores[0];
int min = scores[0];
int sum = 0;
for(int i = 0;i < scores.length;i++){
if(max < scores[i]){
max = scores[i];
}
if(min > scores[i]){
min = scores[i];
}
sum += scores[i];
}
double avg = (double)(sum - max - min) / (scores.length - 2);
System.out.println("选手去掉最高分和最低分之后的平均分为:" + avg);
}
}
创建一个长度为6的int型数组,要求数组元素的值都在1-30之间,且是随机赋值。同时,要求元素的值各不相同。
public class Test4 {
// 5-67 Math.random() * 63 + 5;
@Test
public void test1() {
int[] arr = new int[6];
for (int i = 0; i < arr.length; i++) {// [0,1) [0,30) [1,31)
arr[i] = (int) (Math.random() * 30) + 1;
boolean flag = false;
while (true) {
for (int j = 0; j < i; j++) {
if (arr[i] == arr[j]) {
flag = true;
break;
}
}
if (flag) {
arr[i] = (int) (Math.random() * 30) + 1;
flag = false;
continue;
}
break;
}
}
for (int i = 0; i < arr.length; i++) {
System.out.println(arr[i]);
}
}
//更优的方法
@Test
public void test2(){
int[] arr = new int[6];
for (int i = 0; i < arr.length; i++) {// [0,1) [0,30) [1,31)
arr[i] = (int) (Math.random() * 30) + 1;
for (int j = 0; j < i; j++) {
if (arr[i] == arr[j]) {
i--;
break;
}
}
}
for (int i = 0; i < arr.length; i++) {
System.out.println(arr[i]);
}
}
}
提示:使用两个字符串数组,分别保存花色和点数,再用一个字符串数组保存最后的扑克牌。 String[] hua = {“黑桃”,“红桃”,“梅花”,“方片”}; String[] dian = {“A”,“2”,“3”,“4”,“5”,“6”,“7”,“8”,“9”,“10”,“J”,“Q”,“K”};
package com.atguigu3.common_algorithm.exer5;
public class ArrayExer05 {
public static void main(String[] args) {
String[] hua = {"黑桃","红桃","梅花","方片"};
String[] dian = {"A","2","3","4","5","6","7","8","9","10","J","Q","K"};
String[] pai = new String[hua.length * dian.length];
int k = 0;
for(int i = 0;i < hua.length;i++){
for(int j = 0;j < dian.length;j++){
pai[k++] = hua[i] + dian[j];
}
}
for (int i = 0; i < pai.length; i++) {
System.out.print(pai[i] + " ");
if(i % 13 == 12){
System.out.println();
}
}
}
}
拓展:在上述基础上,增加大王、小王。
回形数
从键盘输入一个整数(1~20) ,则以该数字为矩阵的大小,把1,2,3…n*n 的数字按照顺时针螺旋的形式填入其中。
例如: 输入数字2,则程序输出: 1 2 4 3
输入数字3,则程序输出: 1 2 3 8 9 4 7 6 5 输入数字4, 则程序输出: 1 2 3 4 12 13 14 5 11 16 15 6 10 9 8 7
//方式1
public class RectangleTest {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.println("输入一个数字");
int len = scanner.nextInt();
int[][] arr = new int[len][len];
int s = len * len;
/*
* k = 1:向右
* k = 2:向下
* k = 3:向左
* k = 4:向上
*/
int k = 1;
int i = 0,j = 0;
for(int m = 1;m <= s;m++){
if(k == 1){
if(j < len && arr[i][j] == 0){
arr[i][j++] = m;
}else{
k = 2;
i++;
j--;
m--;
}
}else if(k == 2){
if(i < len && arr[i][j] == 0){
arr[i++][j] = m;
}else{
k = 3;
i--;
j--;
m--;
}
}else if(k == 3){
if(j >= 0 && arr[i][j] == 0){
arr[i][j--] = m;
}else{
k = 4;
i--;
j++;
m--;
}
}else if(k == 4){
if(i >= 0 && arr[i][j] == 0){
arr[i--][j] = m;
}else{
k = 1;
i++;
j++;
m--;
}
}
}
//遍历
for(int m = 0;m < arr.length;m++){
for(int n = 0;n < arr[m].length;n++){
System.out.print(arr[m][n] + "\t");
}
System.out.println();
}
}
}
//方式2
/*
01 02 03 04 05 06 07
24 25 26 27 28 29 08
23 40 41 42 43 30 09
22 39 48 49 44 31 10
21 38 47 46 45 32 11
20 37 36 35 34 33 12
19 18 17 16 15 14 13
*/
public class RectangleTest1 {
public static void main(String[] args) {
int n = 7;
int[][] arr = new int[n][n];
int count = 0; //要显示的数据
int maxX = n-1; //x轴的最大下标
int maxY = n-1; //Y轴的最大下标
int minX = 0; //x轴的最小下标
int minY = 0; //Y轴的最小下标
while(minX<=maxX) {
for(int x=minX;x<=maxX;x++) {
arr[minY][x] = ++count;
}
minY++;
for(int y=minY;y<=maxY;y++) {
arr[y][maxX] = ++count;
}
maxX--;
for(int x=maxX;x>=minX;x--) {
arr[maxY][x] = ++count;
}
maxY--;
for(int y=maxY;y>=minY;y--) {
arr[y][minX] = ++count;
}
minX++;
}
for(int i=0;i
public class TestArrayReverse1 {
public static void main(String[] args) {
int[] arr = {1,2,3,4,5};
System.out.println("反转之前:");
for (int i = 0; i < arr.length; i++) {
System.out.println(arr[i]);
}
//反转
/*
思路:首尾对应位置的元素交换
(1)确定交换几次
次数 = 数组.length / 2
(2)谁和谁交换
for(int i=0; i<次数; i++){
int temp = arr[i];
arr[i] = arr[arr.length-1-i];
arr[arr.length-1-i] = temp;
}
*/
for(int i=0; i
数组的扩容
题目:现有数组 int[] arr = new int[]{1,2,3,4,5}; ,现将数组长度扩容1倍,并将10,20,30三个数据添加到arr数组中,如何操作?
public class ArrTest1 {
public static void main(String[] args) {
int[] arr = new int[]{1,2,3,4,5};
int[] newArr = new int[arr.length << 1];
for(int i = 0;i < arr.length;i++){
newArr[i] = arr[i];
}
newArr[arr.length] = 10;
newArr[arr.length + 1] = 20;
newArr[arr.length + 2] = 30;
arr = newArr;
//遍历arr
for (int i = 0; i < arr.length; i++) {
System.out.println(arr[i]);
}
}
}
数组的缩容
题目:现有数组 int[] arr={1,2,3,4,5,6,7}。现需删除数组中索引为4的元素。
public class ArrTest2 {
public static void main(String[] args) {
int[] arr = {1, 2, 3, 4, 5, 6, 7};
//删除数组中索引为4的元素
int delIndex = 4;
//方案1:
/*//创建新数组
int[] newArr = new int[arr.length - 1];
for (int i = 0; i < delIndex; i++) {
newArr[i] = arr[i];
}
for (int i = delIndex + 1; i < arr.length; i++) {
newArr[i - 1] = arr[i];
}
arr = newArr;
for (int i = 0; i < arr.length; i++) {
System.out.println(arr[i]);
}*/
//方案2:
for (int i = delIndex; i < arr.length - 1; i++) {
arr[i] = arr[i + 1];
}
arr[arr.length - 1] = 0;
for (int i = 0; i < arr.length; i++) {
System.out.println(arr[i]);
}
}
}
1、顺序查找
顺序查找:挨个查看
要求:对数组元素的顺序没要求
public class TestArrayOrderSearch {
//查找value第一次在数组中出现的index
public static void main(String[] args){
int[] arr = {4,5,6,1,9};
int value = 1;
int index = -1;=
for(int i=0; i
//二分法查找:要求此数组必须是有序的。
int[] arr3 = new int[]{-99,-54,-2,0,2,33,43,256,999};
boolean isFlag = true;
int value = 256;
//int value = 25;
int head = 0;//首索引位置
int end = arr3.length - 1;//尾索引位置
while(head <= end){
int middle = (head + end) / 2;
if(arr3[middle] == value){
System.out.println("找到指定的元素,索引为:" + middle);
isFlag = false;
break;
}else if(arr3[middle] > value){
end = middle - 1;
}else{//arr3[middle] < value
head = middle + 1;
}
}
if(isFlag){
System.out.println("未找打指定的元素");
}
• 定义
– 排序:假设含有n个记录的序列为{R1,R2,…,Rn},其相应的关键字序列为{K1,K2,…,Kn}。将这些记录重新排序为{Ri1,Ri2,…,Rin},使得相应的关键字值满足条Ki1<=Ki2<=…<=Kin,这样的一种操作称为排序。
– 通常来说,排序的目的是快速查找。
• 衡量排序算法的优劣:
– 时间复杂度:分析关键字的比较次数和记录的移动次数
– 常见的算法时间复杂度由小到大依次为:Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…<Ο(2n)<Ο(n!)
一个算法的空间复杂度S(n)定义为该算法所耗费的存储空间,它也是问题规模n的函数。
– 稳定性:若两个记录A和B的关键字值相等,但排序后A、B的先后次序保持不变,则称这种排序算法是稳定的。
• 排序算法分类:内部排序和外部排序
– 内部排序:整个排序过程不需要借助于外部存储器(如磁盘等),所有排序操作都在内存中完成。
– 外部排序:参与排序的数据非常多,数据量非常大,计算机无法把整个排序过程放在内存中完成,必须借助于外部存储器(如磁盘)。外部排序最常见的是多路归并排序。可以认为外部排序是由多次内部排序组成。
• 十大内部排序算法
数组的排序算法很多,实现方式各不相同,时间复杂度、空间复杂度、稳定性也各不相同:
常见时间复杂度所消耗的时间从小到大排序:
O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(n^3) < O(2^n) < O(n!) < O(n^n)
注意,经常将以2为底n的对数简写成logn。
排序思想:
动态演示:https://visualgo.net/zh/sorting
/*
1、冒泡排序(最经典)
思想:每一次比较“相邻(位置相邻)”元素,如果它们不符合目标顺序(例如:从小到大),
就交换它们,经过多轮比较,最终实现排序。
(例如:从小到大) 每一轮可以把最大的沉底,或最小的冒顶。
过程:arr{6,9,2,9,1} 目标:从小到大
第一轮:
第1次,arr[0]与arr[1],6>9不成立,满足目标要求,不交换
第2次,arr[1]与arr[2],9>2成立,不满足目标要求,交换arr[1]与arr[2] {6,2,9,9,1}
第3次,arr[2]与arr[3],9>9不成立,满足目标要求,不交换
第4次,arr[3]与arr[4],9>1成立,不满足目标要求,交换arr[3]与arr[4] {6,2,9,1,9}
第一轮所有元素{6,9,2,9,1}已经都参与了比较,结束。
第一轮的结果:第“一”最大值9沉底(本次是后面的9沉底),即到{6,2,9,1,9}元素的最右边
第二轮:
第1次,arr[0]与arr[1],6>2成立,不满足目标要求,交换arr[0]与arr[1] {2,6,9,1,9}
第2次,arr[1]与arr[2],6>9不成立,满足目标要求,不交换
第3次:arr[2]与arr[3],9>1成立,不满足目标要求,交换arr[2]与arr[3] {2,6,1,9,9}
第二轮未排序的所有元素 {6,2,9,1}已经都参与了比较,结束。
第二轮的结果:第“二”最大值9沉底(本次是前面的9沉底),即到{2,6,1,9}元素的最右边
第三轮:
第1次,arr[0]与arr[1],2>6不成立,满足目标要求,不交换
第2次,arr[1]与arr[2],6>1成立,不满足目标要求,交换arr[1]与arr[2] {2,1,6,9,9}
第三轮未排序的所有元素{2,6,1}已经都参与了比较,结束。
第三轮的结果:第三最大值6沉底,即到 {2,1,6}元素的最右边
第四轮:
第1次,arr[0]与arr[1],2>1成立,不满足目标要求,交换arr[0]与arr[1] {1,2,6,9,9}
第四轮未排序的所有元素{2,1}已经都参与了比较,结束。
第四轮的结果:第四最大值2沉底,即到{1,2}元素的最右边
*/
public class Test19BubbleSort{
public static void main(String[] args){
int[] arr = {6,9,2,9,1};
//目标:从小到大
//冒泡排序的轮数 = 元素的总个数 - 1
//轮数是多轮,每一轮比较的次数是多次,需要用到双重循环,即循环嵌套
//外循环控制 轮数,内循环控制每一轮的比较次数和过程
for(int i=1; i arr[j+1]){
//交换arr[j]与arr[j+1]
int temp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = temp;
}
}
}
//完成排序,遍历结果
for(int i=0; i
冒泡排序优化(选讲)
/*
思考:冒泡排序是否可以优化
*/
class Test19BubbleSort2{
public static void main(String[] args) {
int[] arr = {1, 3, 5, 7, 9};
//从小到大排序
for (int i = 0; i < arr.length - 1; i++) {
boolean flag = true;//假设数组已经是有序的
for (int j = 0; j < arr.length - 1 - i; j++) {
//希望的是arr[j] < arr[j+1]
if (arr[j] > arr[j + 1]) {
//交换arr[j]与arr[j+1]
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
flag = false;//如果元素发生了交换,那么说明数组还没有排好序
}
}
if (flag) {
break;
}
}
//完成排序,遍历结果
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
}
}
快速排序(Quick Sort)由图灵奖获得者Tony Hoare发明,被列为20世纪十大算法之一,是迄今为止所有内排序算法中速度最快的一种,快速排序的时间复杂度为O(nlog(n))。
快速排序通常明显比同为O(nlogn)的其他算法更快,因此常被采用,而且快排采用了分治法的思想,所以在很多笔试面试中能经常看到快排的影子。
排序思想:
动态演示:https://visualgo.net/zh/sorting
图示1:
性能比较:
– 从平均时间而言:快速排序最佳。但在最坏情况下时间性能不如堆排序和归并排序。
– 从算法简单性看:由于直接选择排序、直接插入排序和冒泡排序的算法比较简单,将其认为是简单算法。对于Shell排序、堆排序、快速排序和归并排序算法,其算法比较复杂,认为是复杂排序。
– 从稳定性看:直接插入排序、冒泡排序和归并排序时稳定的;而直接选择排序、快速排序、 Shell排序和堆排序是不稳定排序
– 从待排序的记录数n的大小看,n较小时,宜采用简单排序;而n较大时宜采用改进排序。
选择:
– 若n较小(如n≤50),可采用直接插入或直接选择排序。 当记录规模较小时,直接插入排序较好;否则因为直接选择移动的记录数少于直接插入,应选直接选择排序为宜。
– 若文件初始状态基本有序(指正序),则应选用直接插入、冒泡或随机的快速排序为宜;
– 若n较大,则应采用时间复杂度为O(nlgn)的排序方法:快速排序、堆排序或归并排序。
java.util.Arrays类即为操作数组的工具类,包含了用来操作数组(比如排序和搜索)的各种方法。 比如:
数组元素拼接:
– static String toString(int[] a) :字符串表示形式由数组的元素列表组成,括在方括号(“[]”)中。相邻元素用字符 “, “(逗号加空格)分隔。形式为:[元素1,元素2,元素3。。。]
– static String toString(Object[] a) :字符串表示形式由数组的元素列表组成,括在方括号(”[]”)中。相邻元素用字符 ", "(逗号加空格)分隔。元素将自动调用自己从Object继承的toString方法将对象转为字符串进行拼接,如果没有重写,则返回类型@hash值,如果重写则按重写返回的字符串进行拼接。
数组排序:
– static void sort(int[] a) :将a数组按照从小到大进行排序
– static void sort(int[] a, int fromIndex, int toIndex) :将a数组的[fromIndex, toIndex)部分按照升序排列
– static void sort(Object[] a) :根据元素的自然顺序对指定对象数组按升序进行排序。
– static void sort(T[] a, Comparator super T> c) :根据指定比较器产生的顺序对指定对象数组进行排序。
数组元素的二分查找:
– static int binarySearch(int[] a, int key) 、static int binarySearch(Object[] a, Object key) :要求数组有序,在数组中查找key是否存在,如果存在返回第一次找到的下标,不存在返回负数。
数组的复制:
– static int[] copyOf(int[] original, int newLength) :根据original原数组复制一个长度为newLength的新数组,并返回新数组
– static T[] copyOf(T[] original,int newLength):根据original原数组复制一个长度为newLength的新数组,并返回新数组
– static int[] copyOfRange(int[] original, int from, int to) :复制original原数组的[from,to)构成新数组,并返回新数组
– static T[] copyOfRange(T[] original,int from,int to):复制original原数组的[from,to)构成新数组,并返回新数组
比较两个数组是否相等:
– static boolean equals(int[] a, int[] a2) :比较两个数组的长度、元素是否完全相同
– static boolean equals(Object[] a,Object[] a2):比较两个数组的长度、元素是否完全相同
填充数组:
– static void fill(int[] a, int val) :用val值填充整个a数组
– static void fill(Object[] a,Object val):用val对象填充整个a数组
– static void fill(int[] a, int fromIndex, int toIndex, int val):将a数组[fromIndex,toIndex)部分填充为val值
– static void fill(Object[] a, int fromIndex, int toIndex, Object val) :将a数组[fromIndex,toIndex)部分填充为val对象
举例:java.util.Arrays类的sort()方法提供了数组元素排序功能:
import java.util.Arrays;
public class SortTest {
public static void main(String[] args) {
int[] arr = {3, 2, 5, 1, 6};
System.out.println("排序前" + Arrays.toString(arr));
Arrays.sort(arr);
System.out.println("排序后" + Arrays.toString(arr));
}
}
当访问数组元素时,下标指定超出[0, 数组名.length-1]的范围时,就会报数组下标越界异常:ArrayIndexOutOfBoundsException。
public class TestArrayIndexOutOfBoundsException {
public static void main(String[] args) {
int[] arr = {1,2,3};
// System.out.println("最后一个元素:" + arr[3]);//错误,下标越界
// System.out.println("最后一个元素:" + arr[arr.length]);//错误,下标越界
System.out.println("最后一个元素:" + arr[arr.length-1]);//对
}
}
创建数组,赋值3个元素,数组的索引就是0,1,2,没有3索引,因此我们不能访问数组中不存在的索引,程序运行后,将会抛出 ArrayIndexOutOfBoundsException 数组越界异常。在开发中,数组的越界异常是不能出现的,一旦出现了,就必须要修改我们编写的代码。
观察一下代码,运行后会出现什么结果。
public class TestNullPointerException {
public static void main(String[] args) {
//定义数组
int[][] arr = new int[3][];
System.out.println(arr[0][0]);//NullPointerException
}
}
因为此时数组的每一行还未分配具体存储元素的空间,此时arr[0]是null,此时访问arr[0][0]会抛出NullPointerException 空指针异常。
小结:空指针异常情况
//举例一:
// int[] arr1 = new int[10];
// arr1 = null;
// System.out.println(arr1[9]);
//举例二:
// int[][] arr2 = new int[5][];
// //arr2[3] = new int[10];
// System.out.println(arr2[3][3]);
//举例三:
String[] arr3 = new String[10];
System.out.println(arr3[2].toString());