Boosting 的意思就是提升,这是一种通过训练弱学习模型的“肌肉”将其提升为强学习模型的算法。要想在机器学习竞赛中追求卓越,Boosting是一种必需的存在。这是一个属于“高手”的技术,我们当然也应该掌握。
Boosting 的基本思路是逐步优化模型。这与Bagging 不同。Bagging 是独立地生成很多不同的模型并对预测结果进行集成。Boosting则是持续地通过新模型来优化同一个基模型,每一个新的弱模型加入进来的时候,就在原有模型的基础上整合新模型,从而形成新的基模型。而对新的基模型的训练,将一直聚集于之前模型的误差点,也就是原模型预测出错的样本(而不是像 Bagging 那样随机选择样本),目标是不断减小模型的预测误差。
下面的 Boosting 示意图展示了这样的过程:一个拟合效果很弱的模型(上左图的水平红线),通过梯度提升,逐步形成了较接近理想拟合曲线的模型(下右图的红线)。
梯度下降是机器得以自我优化的本源。
机器学习的模型内部参数在梯度下降的过程中逐渐自我更新,直到达到最优解。
而Boosting 这个模型逐渐优化,自我更新的过程特别类似于梯度下降,它是把梯度下降的思路从更新模型内部参数扩展到更新模型本身。因此,可以说Boosting就是模型通过梯度下降自我优化的过程。
之前的Bagging非常精准地拟合每一个数据点(如很深的决策树)并逐渐找到更粗放的算法(如随机森林)以削弱对数据的过拟合,目的是降低方差。而现在的Boosting,则是把一个拟合很差的模型逐渐提升得比较好,目的是降低偏差。
Boosting 是如何实现自我优化的呢?有以下两个关键步骤。
实战中的Boosting 算法,有AdaBoost、梯度提升决策树(GBDT),以及XGBoost 等【注:LightGBM、Catboost也是,这两块实战看:机器学习_常见算法比较模型效果(LR、KNN、SVM、NB、DT、RF、XGB、LGB、CAT)】。这些算法都包含了 Boosting提升的思想。也就是说,每一个新模型的生成都是建立在上一个模型的基础之上,具体细节则各有不同。
AdaBoost 是给不同的样本分配不同的权重,被分错的样本的权重在Boosting 过程中会增大,新模型会因此更加关注这些被分错的样本,反之,样本的权重会减小。然后,将修改过权重的新数据集输入下层模型进行训练,最后将每次得到的基模型组合起来,也根据其分类错误率对模型赋予权重,集成为最终的模型。
import numpy as np # 基础线性代数扩展包
import pandas as pd # 数据处理工具箱
df_bank = pd.read_csv("../数据集/BankCustomer.csv") # 读取文件
# 构建特征和标签集合
y = df_bank['Exited']
X = df_bank.drop(['Name', 'Exited', 'City'], axis=1)
from sklearn.model_selection import train_test_split # 拆分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.2, random_state=0)
# 对多棵决策树进行Bagging,即树的聚合
from sklearn.ensemble import BaggingClassifier # 导入Bagging分类器
from sklearn.tree import DecisionTreeClassifier # 导入决策树分类器
from sklearn.metrics import (f1_score, confusion_matrix) # 导入评估标准
from sklearn.ensemble import AdaBoostClassifier # 导入AdaBoost模型
dt = DecisionTreeClassifier() # 选择决策树分类器作为AdaBoost的基准算法
ada = AdaBoostClassifier(dt) # AdaBoost模型
# 使用网格搜索优化参数
ada_param_grid = {"base_estimator__criterion" : ["gini", "entropy"],
"base_estimator__splitter" : ["best", "random"],
"base_estimator__random_state" : [7,9,10,12,15],
"algorithm" : ["SAMME","SAMME.R"],
"n_estimators" :[1,2,5,10],
"learning_rate": [0.0001, 0.001, 0.01, 0.1, 0.2, 0.3,1.5]}
ada_gs = GridSearchCV(ada,param_grid = ada_param_grid,
scoring="f1", n_jobs= 10, verbose = 1)
ada_gs.fit(X_train,y_train) # 拟合模型
ada_gs = ada_gs.best_estimator_ # 最佳模型
y_pred = ada_gs.predict(X_test) # 进行预测
print("Adaboost测试准确率: {:.2f}%".format(ada_gs.score(X_test, y_test)*100))
print("Adaboost测试F1分数: {:.2f}%".format(f1_score(y_test, y_pred)*100))
我们仍然选择决策树分类器作为AdaBoost的基准算法。从结果上来看,这个问题应用 AdaBoost 算法求解,效果并不是很好
梯度提升(Granding Boosting)算法是梯度下降和Boosting 这两种算法结合的产物。因为常见的梯度提升都是基于决策树的,有时就直接叫作GBDT,即梯度提升决策树(Granding Boosting Decision Tree )。
不同于 AdaBoost只是对样本进行加权,GBDT算法中还会定义一个损失函数,并对损失和机器学习模型所形成的函数进行求导,每次生成的模型都是沿着前面模型的负梯度方向(一阶导数)进行优化,直到发现全局最优解。也就是说,GBDT的每一次迭代中,新的树所学习的内容是之前所有树的结论和损失,对其拟合得到一个当前的树,这棵新的树就相当于是之前每一棵树效果的累加。
梯度提升算法,对于回归问题,目前被认为是最优算法之一。
输出结果显示,梯度提升算法的效果果然很好,F1分数达到60%以上。
from sklearn.ensemble import GradientBoostingClassifier # 导入梯度提升分类器
gb = GradientBoostingClassifier() # 梯度提升分类器
# 使用网格搜索优化参数
gb_param_grid = {'loss' : ["deviance"],
'n_estimators' : [100,200,300],
'learning_rate': [0.1, 0.05, 0.01],
'max_depth': [4, 8],
'min_samples_leaf': [100,150],
'max_features': [0.3, 0.1]}
gb_gs = GridSearchCV(gb,param_grid = gb_param_grid,
scoring="f1", n_jobs= 10, verbose = 1)
gb_gs.fit(X_train,y_train) # 拟合模型
gb_gs = gb_gs.best_estimator_ # 最佳模型
y_pred = gb_gs.predict(X_test) # 进行预测
print("梯度提升测试准确率: {:.2f}%".format(gb_gs.score(X_test, y_test)*100))
print("梯度提升测试F1分数: {:.2f}%".format(f1_score(y_test, y_pred)*100))
极端梯度提升(eXtreme Gradient Boosting,xGBoost,有时候也直接叫作XGB)和 GBDT类似,也会定义一个损失函数。不同于GBDT只用到一阶导数信息,XGBoost会利用泰勒展开式把损失函数展开到二阶后求导,利用了二阶导数信息,这样在训练集上的收敛会更快。
from xgboost import XGBClassifier # 导入XGB分类器
xgb = XGBClassifier() # XGB分类器
# 使用网格搜索优化参数
xgb_param_grid = {'min_child_weight': [1, 5, 10],
'gamma': [0.5, 1, 1.5, 2, 5],
'subsample': [0.6, 0.8, 1.0],
'colsample_bytree': [0.6, 0.8, 1.0],
'max_depth': [3, 4, 5]}
xgb_gs = GridSearchCV(xgb,param_grid = xgb_param_grid,
scoring="f1", n_jobs= 10, verbose = 1)
xgb_gs.fit(X_train,y_train) # 拟合模型
xgb_gs = xgb_gs.best_estimator_ # 最佳模型
y_pred = xgb_gs.predict(X_test) # 进行预测
print("XGB测试准确率: {:.2f}%".format(xgb_gs.score(X_test, y_test)*100))
print("XGB测试F1分数: {:.2f}%".format(f1_score(y_test, y_pred)*100))
对于很多浅层的回归、分类问题,上面的这些Boosting 算法目前都是很热门、很常用的。整体而言,Boosting 算法都是生成一棵树后根据反馈,才开始生成另一棵树。
Bagging是降低方差,利用基模型的独立性;而Boosting是降低偏差,基于同一个基模型,通过增加被错分的样本的权重和梯度下降来提升模型性能。
学习机器学习的参考资料:
(1)书籍
利用Python进行数据分析
西瓜书
百面机器学习
机器学习实战
阿里云天池大赛赛题解析(机器学习篇)
白话机器学习中的数学
零基础学机器学习
图解机器学习算法
…
(2)机构
光环大数据
开课吧
极客时间
七月在线
深度之眼
贪心学院
拉勾教育
博学谷
…