- 自然语言模型(NLP)介绍
Liudef06
StableDiffusion自然语言处理人工智能
一、自然语言模型概述自然语言模型(NLP)通过模拟人类语言理解和生成能力,已成为人工智能领域的核心技术。近年来,以DeepSeek、GPT-4、Claude等为代表的模型在技术突破和应用场景上展现出显著优势。例如,DeepSeek通过强化学习提升推理能力,其混合专家架构(MoE)显著优化了计算效率。二、核心技术解析1.DeepSeek模型架构混合专家模型(MoE):DeepSeek-V3采用Mo
- 人工智能之数学基础:矩阵的秩
每天五分钟玩转人工智能
机器学习深度学习之数学基础人工智能矩阵机器学习深度学习线性代数秩
本文重点矩阵的秩,作为矩阵理论中的一个核心概念,是连接矩阵性质与应用的重要桥梁。本文我们将学习矩阵秩的概念,通过矩阵的秩可以判断矩阵是否可逆等等,所以矩阵的秩是非常重要的一个概念。矩阵秩的概念秩定义为矩阵A的线性独立的行(或列)的最大数目。也就是说,如果把矩阵看成由行向量或列向量组成,那么矩阵的秩就是这些向量中极大线性无关组所含向量的个数。矩阵的秩定义为矩阵线性无关的行向量或者列向量的最大数量,表
- 清华出品DeepSeek六版手册,携全套AI资料,带你闯入AI的奇妙世界
2501_90771553
pdf
清华出品DeepSeek六版手册,携全套AI资料,带你闯入AI的奇妙世界在科技飞速发展的时代,人工智能(AI)已然成为引领变革的核心力量。无论是对AI充满好奇的初学者,还是在该领域深耕的专业人士,都在不断探寻着更优质、更全面的学习资源。现在,一份来自清华大学的厚礼——DeepSeek六版手册,带着全套AI资料震撼登场,将引领你走进AI的奇妙世界!DeepSeek系列手册,凭借清华大学深厚的学术底蕴
- 《深度学习实战》第12集:大模型的未来与行业应用
带娃的IT创业者
深度学习实战深度学习
深度学习实战|第12集:大模型的未来与行业应用随着深度学习技术的快速发展,大模型(如GPT、LLaMA、Bloom等)已经成为人工智能领域的核心驱动力。本篇博客将探讨大模型的发展趋势及其在医疗、金融、教育等行业的实际应用,并通过2个实战项目展示如何使用开源大模型构建问答系统。此外,我们还会分析大模型的前沿技术方向。图示:大模型发展历程与行业应用场景1.大模型发展历程图以下是大模型从早期到现在的关键
- 深度学习突破:LLaMA-MoE模型的高效训练策略
人工智能大模型讲师培训咨询叶梓
深度学习llama人工智能Llama-Moe大模型语言模型
在人工智能领域,大模型(LLM)的崛起带来了前所未有的进步,但随之而来的是巨大的计算资源需求。为了解决这一问题,Mixture-of-Expert(MoE)模型架构应运而生,而LLaMA-MoE正是这一架构下的重要代表。LLaMA-MoE是一种基于LLaMA系列和SlimPajama的MoE模型,它通过将LLaMA的前馈网络(FFNs)划分为稀疏专家,并为每层专家插入top-K个门,从而显著减小模
- 系统对接方案_浅谈RPA系统
weixin_39881760
系统对接方案
首先本文是有感而发,其次是我本身是大数据和人工智能领域产品多年从业者,并不局限于RPA领域,做过一些RPA项目也和客户沟通并且提供过顾问和咨询服务,所以有一定理解。从网上可见的大部分文章包括本问题下面的回答中,都可以看到,大部分是宏观回答,从狭义来说,RPA可以是一个软件工具、可以是一套系统也可以是一个平台;RPA可以让办公自动化、业务流程自动化。从广义来说,任何一个可被规则化且突发、未知情况少的
- 双盲机制(信念,欲望):模型上下文通常会包含所有信,双盲机制屏蔽:每个智能体分别进行独立的模型调用
ZhangJiQun&MXP
教学2021AIpython2024大模型以及算力人工智能androidpython自然语言处理pycharm
如何让人工智能生成的说服性对话更接近真实的日常交流目录如何让人工智能生成的说服性对话更接近真实的日常交流**一、核心创新点解析****1.双盲对话生成机制****2.因果心理理论指导****3.多智能体协作框架ToMMA****二、实验结论****三、论文贡献**怎么代码中实现Agent的双盲场景假设代码实现代码解释注意事项模型上下文通常会包含所有信,双盲机制屏蔽:每个智能体分别进行独立的模型调用
- 【Swift 算法实战】判断数组中是否存在重复元素
网罗开发
Swiftvue.jsleetcode算法
网罗开发(小红书、快手、视频号同名) 大家好,我是展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、HarmonyOS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。图书作者:《ESP32-C3物联网工程开发实战》图书作者:《SwiftUI入门,进阶与实战》超级个体:CO
- Python项目-基于深度学习的校园人脸识别考勤系统
天天进步2015
Python项目实战python
引言随着人工智能技术的快速发展,深度学习在计算机视觉领域的应用日益广泛。人脸识别作为其中的一个重要分支,已经在安防、金融、教育等多个领域展现出巨大的应用价值。本文将详细介绍如何使用Python和深度学习技术构建一个校园人脸识别考勤系统,该系统能够自动识别学生身份并记录考勤信息,大大提高了考勤效率,减轻了教师的工作负担。系统概述功能特点实时人脸检测与识别:能够从摄像头视频流中实时检测并识别人脸自动考
- python常见面试题 基础篇 (一)
航叔啦
Python基础篇1:为什么学习Python家里有在这个IT圈子里面,也想让我接触这个圈子,然后给我建议学的Python,然后自己通过百度和向有学过Python的同学了解了Python,Python这门语言,入门比较简单,它简单易学,生态圈比较强大,涉及的地方比较多,特别是在人工智能,和数据分析这方面。在未来我觉得是往自动化,人工智能这方面发展的,所以学习了Python2:通过什么途径学习Pyth
- 一次性了解OpenAI的“草莓”(Strawberry)超强实力
金融街小单纯
预测模型生成式人工智能人工智能
OpenAI预计在秋季推出的代号为“草莓”(Strawberry)的新AI模型,是其在AI推理领域的一项重要突破。该项目的成功也将为人类实现通用人工智能(AGI)目标迈出重要一步。使模型不仅能够生成查询答案,还能处理复杂的科学和数学问题,进行自主可靠的“深度研究”。“草莓”项目是OpenAI在AI推理领域的一项重要突破具备高级推理能力、长任务规划、超大规模训练等核心功能与技术特点。该项目的推出将进
- Github 2024-09-30 开源项目周报 Top15
老孙正经胡说
github开源Github趋势分析开源项目PythonGolang
根据GithubTrendings的统计,本周(2024-09-30统计)共有15个项目上榜。根据开发语言中项目的数量,汇总情况如下:开发语言项目数量Python项目7JupyterNotebook项目2Dart项目1Ruby项目1HTML项目1C#项目1TypeScript项目1Rust项目1非开发语言项目1AutoGPT:人工智能革命的先锋创建周期:486天开发语言:Python协议类型:MI
- 免费分享,清华大学DeepSeek 1-6版教程全析,探索未知的技术新领域推文
qq_35008050
pdf
免费分享,清华大学DeepSeek1-6版教程全析,探索未知的技术新领域在科技飞速发展的今天,人工智能领域不断推陈出新,DeepSeek作为其中的一颗新星备受瞩目。如今,一份来自清华大学的珍贵礼物——DeepSeek1-6版教程,正免费向大家敞开知识的大门,助力我们深入探索未知的技术新领域。第一版:基础奠基,开启DeepSeek之旅对于初次接触DeepSeek的人来说,第一版教程就像是一座坚实的基
- 2025人工智能AI与电商革命:人工智能如何塑造在线市场的未来报告300+份汇总解读|附PDF下载
数据挖掘深度学习人工智能算法
原文链接:https://tecdat.cn/?p=40894在当今数字化时代,电子商务与人工智能的融合正重塑商业格局。本报告汇总洞察基于Prosus、Dealroom.co发布的《TheAIxEcommerceRevolution:HowAIisshapingtheFutureofOnlineMarketplaces》及文末308份电子商务和人工智能行业研究报告的数据,报告合集已分享在交流群,阅
- 大模型中的Token究竟是什么?从原理到作用深度解析
自然语言处理算法人工智能
引言在人工智能领域,大型语言模型(LLM)如GPT-4、Claude等系统性地改变了人机交互方式。这些模型处理文本的核心单元被称为"Token",这个看似简单的概念实则蕴含复杂的工程设计和语言学原理。本文将深入解析Token的本质、技术实现及其在模型运作中的关键作用。Token化技术全景图核心处理流程原始文本→预处理→分词算法→词表映射→模型输入↓↓↓大小写转换子词拆分策略特殊Token添加标点规
- ChatGPT与DeepSeek:开源与闭源的AI模型之争
我们的五年
游戏实现chatgpt人工智能
目录一、模型架构与技术原理二、性能能力与应用场景三、用户体验与部署灵活性四、成本与商业模式五、未来展望与市场影响六、总结随着人工智能技术的飞速发展,ChatGPT和DeepSeek作为两大领先的AI语言模型,成为了行业内外关注的焦点。它们在技术架构、应用场景、用户体验和成本等方面存在显著差异,尤其是开源与闭源的模式,使得两者在市场竞争中各有优势。本文将对ChatGPT和DeepSeek进行全面对比
- 郑州人工智能计算中心成果发布会成功举办 埃文科技共建AI生态
人工智能
2024年3月1日,由郑州市科学技术局主办,郑州联通、华为技术有限公司联合承办的郑州人工智能计算中心成果发布会在郑州隆重举行,郑州埃文科技有限公司(以下简称“埃文科技”)作为河南省人工智能领军企业受邀参会。大会以“全面拥抱智能化,共筑算力新底座”为主题,郑州市委副书记、代市长庄建球,河南联通党委书记、总经理华豫民等领导,以及300余位行业专家、企业代表齐聚一堂,共同见证中部地区首个政府主导的智能算
- DeepSeek×博云AIOS:突破算力桎梏,开启AI普惠新纪元
deepseek
背景在全球人工智能技术高速迭代的背景下,算力成本高企、异构资源适配复杂、模型部署效率低下等问题,始终是制约企业AI规模化应用的关键。DeepSeek以创新技术直击产业痛点,而博云先进算力管理平台AIOS的全面适配,则为这一技术落地提供了坚实底座。两者的深度融合,正在重塑AI产业化的技术范式。DeepSeek:算法创新定义AI新范式DeepSeek凭借技术突破,为AI领域树立了新标杆:DeepSee
- Transformer架构简略:DeepSeek 的底层基石
windwant
人工智能人工智能transformer架构
2017年,一篇名为《AttentionisAllYouNeed》的论文横空出世,提出了Transformer架构,彻底改变了自然语言处理(NLP)领域的格局。它不仅在各种NLP任务上取得了突破性进展,更成为了当今人工智能领域最具影响力的架构之一。一、从RNN到Transformer:突破瓶颈,开创先河在Transformer出现之前,循环神经网络(RNN)及其变体(如LSTM、GRU)是处理序列
- Python 基本语法全解析:从安装到应用
木觞清
7天熟练Pythonpython开发语言
Python是一种广泛使用的高级编程语言,因其简洁易懂的语法和强大的功能而受到开发者的喜爱。从数据分析到人工智能,Python都在各个领域占据着重要地位。如果你是编程新手,Python是一个非常适合入门的语言。本篇博客将带你从安装Python到理解其基础语法,再到实际应用中常见的内置函数、文件操作及第三方库的使用。1.Python安装与环境配置在开始编写Python程序之前,你首先需要在你的电脑上
- 大智能:大数据+大模型+大算力_大算力大数据大模型
AI学习不迷路
大数据大模型人工智能语言模型ai产品经理算力
在近日举行的“2022中国人工智能产业年会”主论坛上,中国人工智能学会监事长、中国工程院院士蒋昌俊在报告中表示,人工智能的发展已经历了数十年的过程,大模型ChatGPT在今年春节前后突然出现,大家还没有来得及深度思考就已经“扑面而来”。蒋昌俊大智能的研究进展科学技术的研究约分为两大范式,一是牛顿力学奠定了理论计算的范式,二是开普勒开启数据的范式。之后经历了实验归纳、理论的逻辑推演,以及计算模拟、最
- 神经网络:人工智能的核心技术
m0_75126181
人工智能神经网络深度学习
神经网络简介神经网络是一种模仿生物神经系统的计算模型,由大量相互连接的神经元组成。它通过学习大量的数据来完成复杂的模式识别和决策任务,是当前人工智能和机器学习领域最重要的技术之一。神经网络的基本结构包括输入层、隐藏层和输出层。输入层接收外部数据,隐藏层对数据进行处理和特征提取,输出层产生最终结果。神经元之间通过带权重的连接相互作用,通过调整这些权重来实现学习过程。神经网络的工作原理神经网络的工作原
- DeepSeek与ChatGPT:AI语言模型的全面对决与开发者洞察
硅基打工人
AI人工智能chatgpt语言模型媒体经验分享自然语言处理
大家好,我是硅基打工人呀!在2025年的人工智能领域,DeepSeek与ChatGPT两大语言模型的竞争成为全球开发者关注的焦点。本文将从技术架构、性能表现、应用场景及生态策略等维度,结合最新行业动态与用户实测数据,为开发者呈现这场技术对决的核心要点。一、技术架构对比:效率与规模的博弈DeepSeek的差异化设计混合专家(MoE)架构:通过动态激活部分参数(如R1模型每次仅调用370亿参数),显著
- 嵌入式仿真实验教学平台比Proteus更具有教学优势
嵌入式仿真实验教学平台
学习proteus嵌入式实时数据库stm32嵌入式硬件
近年来,随着物联网、人工智能等技术的快速发展,嵌入式系统教学的实践性和创新性需求日益增强。传统仿真工具如Proteus虽曾占据重要地位,但其局限性逐渐暴露。相比之下,嵌入式仿真实验教学平台凭借其高仿真度、资源整合能力及虚实结合的教学模式,正在成为高校和教育机构的新选择。本文将从技术演进、教学痛点、平台优势及实际应用等角度,解析嵌入式仿真实验教学平台为何能全面超越Proteus,成为教学创新的核心工
- 2024 年 AI 垂直应用迅速落地,人人都可以获得AI红利
yimifx
AIAIGC人工智能人工智能aiAI写作AIGCagiAI编程AI作画
演示站点:https://ai.uaai.cn技能模块官方论坛:www.jingyuai.com京娱AI随着人工智能技术的持续发展与突破,2024年AI辅助研发正成为科技界和工业界瞩目的焦点。从医药研发到汽车设计,从软件开发到材料科学,AI正逐渐渗透到研发的各个环节,变革着传统的研发模式。在这一背景下,AI辅助研发不仅提升了研发效率,降低了成本,更在某种程度上解决了复杂问题,推动了科技进步。202
- ai垂直领域和水平领域如何理解?
王摇摆
ChatGPT人工智能
在AI领域中,"垂直领域"和"水平领域"是两个相关但不同的概念。垂直领域(VerticalDomain):指的是在特定行业或领域中应用人工智能技术和解决方案的情况。在垂直领域中,AI技术被专门应用于解决该领域内的具体问题。例如,医疗保健、金融、零售、交通运输等都是垂直领域。在这些领域中,AI技术被用于医学诊断、风险评估、销售预测、智能交通管理等特定领域的应用。水平领域(HorizontalDoma
- 智能模型轻量化:知识蒸馏技术如何重塑AI部署格局
人工智能
智能模型轻量化:知识蒸馏技术如何重塑AI部署格局前言在人工智能技术高速迭代的今天,模型优化领域正经历着静默的革命。当我们惊叹于DeepSeek在自然语言处理上的惊艳表现时,一个关键问题逐渐浮出水面:如何让这些"庞然大物"真正走入现实场景?知识蒸馏技术作为模型压缩领域的突破性方案,正在为AI技术的普惠化开辟新路径。一、技术本质的解构与重构知识蒸馏颠覆了传统模型训练的范式,构建了"师生传承"的新型学习
- AI大模型之争:通用性与垂直性,哪个更具优势?
想你依然心痛
个人总结与成长规划人工智能
文章目录每日一句正能量前言背景介绍能力分析通用大模型的能力:垂直大模型的能力:差异与互补性分析:难点探究1.算力挑战2.数据挑战3.算法挑战4.泛化能力5.可解释性和透明度6.伦理和偏见问题7.成本效益后记每日一句正能量昨天已逝,明日是谜,面对今朝,尽力而为!前言在人工智能的快速发展浪潮中,AI大模型作为这一领域的明珠,正以其强大的数据处理能力和智能决策能力,引领着技术革新的潮流。随着技术的不断成
- 超市数字化落地:RWA + 智能体赋能实体零售数字化
leijiwen
零售
引言随着数字化技术的飞速发展,传统零售行业正在面临前所未有的挑战与机遇。在这个转型过程中,**现实世界资产(RWA)与智能体(AIAgents)**的结合为实体零售业带来了强大的赋能,特别是在超市领域。通过将现实资产数字化、引入人工智能技术以及去中心化治理,RWA和智能体为实体零售提供了全新的数字化解决方案,推动零售业向智能化、透明化和个性化方向发展。本文将详细探讨基于RWA与智能体结合的超市数字
- 通用大模型VS垂直大模型,你更青睐哪一方?
109702008
人工智能杂谈人工智能
AI大模型之辩:通用与垂直,谁将引领未来?在人工智能(AI)领域,大模型技术的崛起无疑为整个行业带来了革命性的变革。然而,随着技术的深入发展,AI大模型的战场似乎正在悄然分化,形成了通用大模型与垂直大模型两大阵营。两者各有千秋,各有其适用的场景和优势,那么在这场没有硝烟的战争中,究竟谁将引领未来呢?通用大模型,以其广泛的适用性和强大的学习能力,成为AI领域的明星产品。它能够在多个领域和场景下展现出
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比