Python实现时间序列分析AR定阶自回归模型(ar_select_order算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

Python实现时间序列分析AR定阶自回归模型(ar_select_order算法)项目实战_第1张图片

Python实现时间序列分析AR定阶自回归模型(ar_select_order算法)项目实战_第2张图片

1.项目背景

时间序列分析中,AR定阶自回归模型(AR order selection)是指确定自回归模型(AutoRegressive Model, AR模型)的阶数p的过程。在AR(p)模型中,当前的时间序列值被表示为过去p个时期的线性组合加上一个误差项。

ar_select_order算法是一种用于自动选择最佳AR模型阶数的方法,它通过评估不同阶数下模型的拟合优度、信息准则(如AIC、BIC或HQIC)、预测性能或其他统计测试来确定最合适的p值。

本项目通过ar_select_order算法来构建时间序列分析AR定阶自回归模型。  

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

编号 

变量名称

描述

1

DATE

日期

2

INDPRO

工业生产指数

数据详情如下(部分展示):

Python实现时间序列分析AR定阶自回归模型(ar_select_order算法)项目实战_第3张图片

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

Python实现时间序列分析AR定阶自回归模型(ar_select_order算法)项目实战_第4张图片

关键代码:

3.2 数据缺失查看

使用Pandas工具的info()方法查看数据信息:

Python实现时间序列分析AR定阶自回归模型(ar_select_order算法)项目实战_第5张图片      

从上图可以看到,总共有1个变量,数据中无缺失值,共780条数据。

关键代码:

3.3 数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

Python实现时间序列分析AR定阶自回归模型(ar_select_order算法)项目实战_第6张图片

关键代码如下:    

4.探索性数据分析

4.1 变量直方图

用Matplotlib工具的hist()方法绘制直方图:

Python实现时间序列分析AR定阶自回归模型(ar_select_order算法)项目实战_第7张图片

从上图可以看到,变量主要集中在20~100之间。  

4.2 折线图

Python实现时间序列分析AR定阶自回归模型(ar_select_order算法)项目实战_第8张图片

从上图中可以看到,房价指数是不断波动的。

5.构建AR定阶自回归模型

主要使用ar_select_order算法,用于自回归建模。 

5.1 构建模型

编号

模型名称

参数

1

AR定阶自回归模型

P=13

5.2 模型摘要信息

Python实现时间序列分析AR定阶自回归模型(ar_select_order算法)项目实战_第9张图片

Python实现时间序列分析AR定阶自回归模型(ar_select_order算法)项目实战_第10张图片

5.3 观测值预测绘图

预测值预测绘图:

Python实现时间序列分析AR定阶自回归模型(ar_select_order算法)项目实战_第11张图片

6.模型评估

6.1 模型残差诊断图

Python实现时间序列分析AR定阶自回归模型(ar_select_order算法)项目实战_第12张图片

6.2 模型预测

预测结果及展示:

Python实现时间序列分析AR定阶自回归模型(ar_select_order算法)项目实战_第13张图片

7.结论与展望

综上所述,本文采用了ar_select_order算法来构建AR定阶自回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。 

# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:
 
# 获取方式一:
 
# 项目实战合集导航:
 
https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2
 
# 获取方式二:

链接:https://pan.baidu.com/s/12nTSfPE49ADQoTMg3D-7Gw 
提取码:4ggi

你可能感兴趣的:(机器学习,python,python,机器学习,时间序列分析AR定阶自回归模型,ar_select_order,项目实战)