U 1 ( P 0 ) = 1 j λ ∫ ∫ Σ U ( P 1 ) e x p ( j k r 01 ) r 01 cos ( n ⃗ , r 01 ⃗ ) d s U_1(P_0)=\frac{1}{j\lambda}\int\int_\Sigma U(P_1)\frac{exp(jkr_{01})}{r_{01}}\cos (\vec{n},\vec{r_{01}})ds U1(P0)=jλ1∫∫ΣU(P1)r01exp(jkr01)cos(n,r01)ds
直接计算该积分,需要二重循环,然后再二重循环遍历观测屏上的点,效率低下
二重积分在 Σ \Sigma Σ上进行计算。将ds写为dxdy的形式,z为观测平面与源平面的距离,有
cos ( n ⃗ , r 01 ⃗ ) = z r 01 \cos(\vec{n},\vec{r_{01}}) = \frac{z}{r_{01}} cos(n,r01)=r01z
r 01 = ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 r_{01} = \sqrt{(x-x_0)^2+(y-y_0)^2+(z-z_0)^2} r01=(x−x0)2+(y−y0)2+(z−z0)2
U 1 ( P 0 ) = 1 j λ ∫ ∫ Σ U ( x , y ) e x p ( j k r 01 ) r 01 cos ( n ⃗ , r 01 ⃗ ) d x d y = ∫ ∫ Σ U ( x , y ) V ( x , y ) d x d y \begin{align} U_1(P_0) &=\frac{1}{j\lambda}\int\int_\Sigma U(x,y)\frac{exp(jkr_{01})}{r_{01}}\cos (\vec{n},\vec{r_{01}})dxdy \nonumber \\ &=\int\int_\Sigma U(x,y)V(x,y)dxdy \end{align} U1(P0)=jλ1∫∫ΣU(x,y)r01exp(jkr01)cos(n,r01)dxdy=∫∫ΣU(x,y)V(x,y)dxdy
V ( x , y ) = 1 j λ e x p ( j k ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 ) ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 z ( x − x 0 ) 2 + ( y − y 0