- Qt 3D模块加载复杂模型
使用Qt渲染复杂的3D模型该怎么做呢?1.使用Qt3D模块示例如下:#include#include#include#include#include#include//创建基础3D场景Qt3DExtras::Qt3DWindowview;//创建根实体Qt3DCore::QEntity*rootEntity=newQt3DCore::QEntity;//添加相机Qt3DRender::QCamer
- 【数据中心】网络设计框架
flyair_China
架构
第一章:总体架构设计叶脊架构(Leaf-Spine)全互联无阻塞设计:Leaf与Spine全连接,跨层带宽≥100G,单集群支持10万+服务器(腾讯星脉网络)。分层扩展模型:采用POD(性能优化模块)化设计,单POD支持5000节点,通过超级核心层互联多POD(阿里云实践)。冗余与高可用设备级:双电源/双引擎;链路级:M-LAG多活聚合;协议级:BGPEVPN替代STP,故障切换<50ms(华为C
- HLA仿真程序设计实战:FoodFight_MFC案例剖析
本文还有配套的精品资源,点击获取简介:HLA仿真程序设计利用高级语言抽象构建集成分布式仿真系统,促进仿真组件之间的互操作性。以”FoodFight_MFC”为例,该案例基于MicrosoftFoundationClass(MFC)库,介绍HLA编程基础概念和实践。通过学习HLA接口、MFC应用框架、对象模型设计、数据同步机制、联邦管理和性能优化,学习者能掌握分布式仿真系统的构建和运行。1.HLA仿
- stable diffusion-系统课程:0基础系统性学习AI绘画,小白也能轻松上手
顺心网创
本课程是AI绘画工具stablediffusion的系统课程,内容通俗且细致,让小白也能上手。课程大纲基础部分1.前置要求+整合包安装+启动器使用2.纯净原版安装+使用介绍3.文生图精讲4.图生图精讲5.涂鸦、局部重绘、涂鸦重绘6.上传蒙版、批量处理7.模型精讲8.提示词精讲9.插件的认识与安装10.脚本的安装及使用11controlnet基础讲解12.cn-线性控制类型13.cn-深度和法线进阶
- 大语言模型应用指南:网页实时浏览
AGI大模型与大数据研究院
AI大模型应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型应用指南:网页实时浏览作者:禅与计算机程序设计艺术1.背景介绍1.1大语言模型的崛起1.1.1自然语言处理的发展历程1.1.2Transformer模型的突破1.1.3预训练语言模型的优势1.2网页浏览的痛点1.2.1信息过载与检索困难1.2.2内容理解与知识提取1.2.3个性化与智能化需求1.3大语言模型与网页浏览的结合1.3.1智能问答与对话系统1.3.2知识图谱与语义搜索1.3.3
- 大模型部署的整体架构
flyair_China
人工智能云计算架构
一、大模型部署架构1.1部署架构大模型部署的整体架构是一个多层次、软硬件协同的系统工程,旨在解决模型规模庞大、计算资源密集、延迟敏感等挑战。1.1.1、基础架构层:硬件资源与网络算力集群GPU/NPU阵列:如NVIDIAA100/H100/H200/H800、华为昇腾、昆仑芯等,支持FP16/INT8量化计算,显存带宽需达TB级(如HBM3e显存带宽达3.35TB/s)。异构计算:CPU+GPU/
- 高通手机跑AI系列之——人像与背景分割
伊利丹~怒风
Qualcomm人工智能智能手机pythonarmAI编程
环境准备手机测试手机型号:RedmiK60Pro处理器:第二代骁龙8移动--8gen2运行内存:8.0GB,LPDDR5X-8400,67.0GB/s摄像头:前置16MP+后置50MP+8MP+2MPAI算力:NPU48TopsINT8&&GPU1536ALUx2x680MHz=2.089TFLOPS提示:任意手机均可以,性能越好的手机运行速度越快软件APP:AidLux2.0系统环境:Ubunt
- 开源模型应用落地-全能音频新纪元-Kimi-Audio-7B-Instruct-重塑多模态交互边界
开源技术探险家
开源模型-实际应用落地开源音视频AIGCagi
一、前言在AI技术持续突破的2025年,音频交互正从单一任务处理迈向全场景融合的新阶段。4月27日,月之暗面(MoonshotAI)开源的Kimi-Audio-7B-Instruct,以“全能音频通才”之姿,为这一进程树立了里程碑式标杆。这款基于70亿参数架构的模型,首次在单一框架内整合语音识别(ASR)、情感分析(SER)、跨语言对话、语音生成(TTS)等十余项任务,并通过12.5Hz混合标记器
- Kimi-Audio:最佳音LLM, 如何免费使用 Kimi-Audio AI 模型?
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能kimi
简介继DeepSeek之后,字节跳动(现名MoonShotAI,又名Kimi)也在生成式人工智能领域加速发展,并发布了自己的音频模型Kimi-Audio,据说是迄今为止最好的音频模型。推荐文章《NvidiaGPU入门教程之02ubuntu安装A100显卡驱动(含8步快速浓缩教程)》权重2,安装A100显卡驱动《本地大模型知识库OpenWebUI系列之如何解决知识库上传文件故障Extractedco
- 机器人-组成结构-感知 - 决策 - 执行
具身智能-查布嘎
具身智能机器人人工智能
目录一、感知系统内部传感器:外部传感器:二、智能决策系统机器学习家族1.1机器学习2.1深度学习2.2深度学习模型(主要属于监督/强化学习范畴,但结构通用):3.1监督学习3.2监督学习模型4.1半监督学习4.2无/半监督学习模型:5.1无监督学习5.2生成模型(可属于监督/无监督):6.1强化学习7.1其他学习三、控制系统(运控)①对应小脑和脊柱一、感知系统①对应人体的五官。由具有不同功能的各种
- 时序数据库:数据库领域的未来之星
数据库管理艺术
数据库专家之路大数据AI人工智能MCP&AgentSQL实战数据库时序数据库ai
时序数据库:数据库领域的未来之星关键词:时序数据库、时间序列数据、物联网、大数据分析、数据库优化、TSDB、实时数据处理摘要:本文深入探讨了时序数据库(TimeSeriesDatabase,TSDB)这一新兴数据库技术。我们将从基本概念入手,分析时序数据库的核心原理和架构设计,详细讲解其特有的数据模型和存储机制。通过实际代码示例展示如何使用主流时序数据库处理时间序列数据,并探讨其在物联网、金融科技
- 全面解析阿里巴巴 Seata:微服务架构下的分布式事务解决方案(AT模式)
要阿尔卑斯吗.
架构微服务分布式
在微服务架构盛行的今天,系统被拆解成多个独立服务,每个服务对应独立的数据库。这种“服务自治”的设计虽然提高了系统可维护性和扩展性,却带来了新的难题——分布式事务一致性问题。为了保障跨服务、跨库操作的原子性,阿里巴巴开源了一个优秀的解决方案:Seata(SimpleExtensibleAutonomousTransactionArchitecture)。本文将从背景动因、整体架构、核心原理、事务模型
- .NET CORE 分布式事务(四) CAP实现最终一致性
精神小伙就是猛
.netcore分布式架构微服务
目录引言:1.0最终一致性介绍2.0CAP2.0架构预览3.0.NETCORE结合CAP实现最终一致性分布式事务3.1准备工作(数据库,本文使用的是MySql)3.1.1数据模型3.1.2DbContext3.1.3数据库最终生成3.2Nuget引入3.3appsettings.json3.4docker启动一个RabbitMQ3.5Program.cs3.6用户1API控制器3.7用户2API控
- 机器学习入门(五):线性回归—从模型函数到目标函数
米饭超人
从数据反推公式假设我们获得了这样一张表格,上面列举了美国纽约若干程序员职位的年薪:enterimagedescriptionhere大家可以看到,表格中列举了职位、经验、技能、国家和城市几项特征。除了经验一项,其他都是一样的。不同的经验(工作年限),薪水不同。而且看起来,工作年头越多,工资也就越高。那么我们把Experience与Salary抽取出来,用x和y来分别指代它们。enterimaged
- AI驱动的电路仿真革命:从物理模型到智能学习的范式转移
AI驱动的电路仿真革命:从物理模型到智能学习的范式转移人工智能正颠覆传统电路仿真方法,本文将深入解析AI在电路建模、优化与故障诊断中的前沿应用,揭示智能仿真如何提升10倍效率并突破物理限制。一、AI电路仿真的数学基础1.1图神经网络建模电路拓扑电路可抽象为图结构G=(V,E)G=(V,E)G=(V,E):VVV:节点(电子元件)EEE:边(连接关系)图卷积网络(GCN)更新公式:H(l+1)=σ(
- AI推演人类进化:计算人类学与基因仿真的融合革命
AI推演人类进化:计算人类学与基因仿真的融合革命引言:数字达尔文主义的新纪元“进化不是直线,而是亿万次迭代的多元宇宙”——李·克罗宁(计算化学家)当AlphaFold解开蛋白质折叠之谜,AI开始重构生命演化的底层逻辑。本文通过多智能体仿真、古基因组重建与文化演化建模三大技术支柱,揭示AI如何推演人类从南方古猿到智人的百万年征程,并预测未来千年的进化轨迹。一、进化动力学的基础模型1.1扩展的哈迪-温
- MCP协议技术解析:AI时代的通信基础设施革命
MCP协议技术解析:AI时代的通信基础设施革命在AI从工具演变为协作伙伴的进程中,MCP协议正在成为连接智能体与现实世界的“数字神经系统”。当前人工智能技术正经历从孤立模型向生态系统协作的关键转型,而通信协议作为AI能力的“连接器”,其设计直接决定了智能系统的边界与效率。MCP协议(ModelContextProtocol)作为新一代AI通信基础设施,正在开发者社区引发一场静默革命。本文将从技术原
- 短剧业务产业链涉及的技术系统-TKano模型
百态老人
大数据
短剧业务产业链涉及的技术系统中,TKano模型的应用主要集中在用户需求分析方面。TKano模型是一种用于识别和分类用户需求的方法,通过将用户需求分为基础型需求、期望型需求和兴奋型需求,帮助短剧业务更好地理解用户需求并优化产品。在短剧业务中,TKano模型的应用可以帮助企业识别出哪些是基础型需求(如内容的连贯性和完整性),哪些是期望型需求(如快速观看和推荐功能),以及哪些是兴奋型需求(如附加资源和福
- GENERALIST REWARD MODELS: FOUND INSIDE LARGELANGUAGE MODELS
樱花的浪漫
大模型与智能体对抗生成网络与动作识别强化学习语言模型人工智能自然语言处理深度学习机器学习计算机视觉
GeneralistRewardModels:FoundInsideLargeLanguageModelshttps://arxiv.org/pdf/2506.232351.概述将大型语言模型(LLMs)与复杂的人类价值观(如乐于助人和诚实)对齐,仍然是人工智能发展中的一个核心挑战。这项任务的主要范式是来自人类反馈的强化学习(RLHF)[Christianoetal.,2017;Baietal.,
- 一个例子带你入门机器学习
目录1.为建模选择数据2.选择预测目标3.选择“特征”4.构建您的模型(这篇文章将使用经典墨尔本房价数据集作为例子,引导机器学习的流程,数据集为melb_data.csv,请在csdn的下载区自行下载,运行代码时需要将数据集下载在同个目录下)1.为建模选择数据数据集有太多的变量,多到难以理解,甚至无法很好地打印出来。如何将这海量的数据削减为能够理解的内容?我们将首先凭借直觉选择几个变量。后续将介绍
- 借助 Amazon SageMaker Catalog 功能,简化从数据到洞察的路径
在数据驱动的时代,企业常陷于数据孤岛、特征重复开发、模型溯源困难等困境。AmazonSageMakerCatalog应运而生,作为统一的数据和特征治理中心,它能打通从原始数据到模型部署的全链路,显著加速数据科学项目落地。一、痛点:数据科学项目中的常见瓶颈数据发现困难:数据分散在S3、Redshift等不同存储中,缺乏统一视图特征管理混乱:特征工程脚本散落各处,无法复用和共享模型溯源缺失:无法追踪模
- 使用 Python 爬取网易云音乐歌单数据(完整教程)
Python爬虫项目
python开发语言githubselenium爬虫
一、引言随着在线音乐平台的普及,网易云音乐(NetEaseCloudMusic)凭借其个性化的推荐算法和丰富的用户互动,吸引了大量用户。网易云音乐的歌单中包含了丰富的音乐数据,包括歌曲名、歌手、专辑、播放量、评论数等信息。通过爬取这些数据,可以对音乐流行趋势进行分析,挖掘音乐推荐策略,甚至训练个性化推荐模型。本教程将使用Python构建一个爬虫,解析网易云音乐的歌单接口,获取歌曲数据并进行数据分析
- Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现打架检测(C#代码,UI界面版)
格林威
工业相机机器视觉数码相机YOLO深度学习计算机视觉人工智能
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现打架检测(C#代码,UI界面版)工业相机使用YoloV8模型实现打架检测工业相机通过YoloV8模型实现打架检测的技术背景在相机SDK中获取图像转换图像的代码分析工业相机图像转换Bitmap图像格式和Mat图像重要核心代码本地文件图像转换Bitmap图像格式和Mat图像重要核心代码Mat图像导入YoloV8模型重要核心代码代码实现
- Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现人脸识别检测(C#代码,UI界面版)
格林威
机器视觉工业相机数码相机YOLO深度学习人工智能视觉检测c#
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现人脸识别检测(C#代码,UI界面版)工业相机使用YoloV8模型实现人脸的检测工业相机通过YoloV8模型实现人脸识别检测的技术背景在相机SDK中获取图像转换图像的代码分析工业相机图像转换Bitmap图像格式和Mat图像重要核心代码本地文件图像转换Bitmap图像格式和Mat图像重要核心代码Mat图像导入YoloV8模型重要核心代
- Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现人物识别(C#代码,UI界面版)
格林威
工业相机机器视觉数码相机YOLOc#人工智能计算机视觉开发语言
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现人物识别(C#代码,UI界面版)工业相机使用YoloV8模型实现人物识别工业相机实现YoloV8模型实现人物识别的技术背景在相机SDK中获取图像转换图像的代码分析工业相机图像转换Bitmap图像格式和Mat图像重要核心代码本地文件图像转换Bitmap图像格式和Mat图像重要核心代码Mat图像导入YoloV8模型重要核心代码代码实现
- 2023-11-03
彭佩荣律师
调解离婚还是协议离婚?离婚案件中,有很大的一部分是双方经过协商,就离婚中所涉及的财产分割、孩子的抚养以以及经济补偿均达成一致意见,下一步就是办理离婚手续,正常的选择就是去婚姻登记机关进行登记,30天后领取《离婚证》,但是总结我办理的案件,去民政局协议离婚并不是最佳的选择。分析如下首先,民政局办理离婚,需要30天的冷静期,加长了离婚的期限,在30天内会出现很多的款知因素,也许会因为对离婚协议中内容的
- Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现动物分类(C#源码,UI界面版)
格林威
机器视觉工业相机数码相机YOLO深度学习计算机视觉人工智能视觉检测c#
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现动物分类(C#源码,UI界面版))工业相机使用YoloV8模型实现动物分类工业相机实现YoloV8模型实现动物分类的技术背景在相机SDK中获取图像转换图像的代码分析工业相机图像转换Bitmap图像格式和Mat图像重要核心代码本地文件图像转换Bitmap图像格式和Mat图像重要核心代码Mat图像导入YoloV8模型重要核心代码代码实
- 通俗易懂:什么是决策树?
淦暴尼
算法python决策树算法机器学习
1.引言:决策树就像“选择题”你是否曾经在生活中做过“选择题”?比如:今天要不要带伞?晚饭吃什么?该不该买那件心仪已久的商品?其实,我们的大脑经常会像“决策树”一样,通过一连串问题和判断,逐步缩小选择范围,最终做出决定。**决策树(DecisionTree)**就是这样一种模拟人类决策过程的机器学习模型。它通过“提问-分支-决策”的方式,把复杂问题拆解成一系列简单的判断,广泛应用于分类(如判断邮件
- 常用的Modbus、Profibus、EtherCAT和OPC UA协议介绍
qq_25467441
网络
常用的Modbus、Profibus、EtherCAT和OPCUA协议介绍_opc协议和modbus协议-CSDN博客1、Modbus协议协议概述:Modbus是一个串行通信协议,用于连接工业设备。它是一种请求/响应协议,使用客户端/服务器模型。主要分Modbus-RTU、Modbus-ASCII、Modbus-TCP。传输方式:可以通过RTU(远程终端单元)或ASCII(美国标准信息交换码)方式
- AI 大模型重塑软件开发流程
万花丛中一抹绿
人工智能
一、AI大模型的定义与发展历史AI大模型是基于海量数据训练的深度学习模型,具备强大的自然语言理解、逻辑推理和知识生成能力。在软件开发领域,以GPT-4、CodeLlama、GitHubCopilotX为代表的大模型,能理解代码语法、语义及业务逻辑,实现代码生成、漏洞检测等复杂任务。其发展可追溯至2017年,谷歌提出Transformer架构,为大模型奠定了核心基础。2018年,GPT-1问世,参数
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc