纯 01 背包问题的经典格式是:
有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。
举一个例子:
背包最大重量为4。
物品为:
重量 | 价值 | |
---|---|---|
物品0 | 1 | 15 |
物品1 | 3 | 20 |
物品2 | 4 | 30 |
问背包能背的物品最大价值是多少?
确定dp数组(dp table)以及下标的含义
对于背包问题,有一种写法, 是使用二维数组,即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。
确定递推公式
dp[i - 1][j - weight[i]] + value[i]
(dp[i - 1][j - weight[i]] + 物品i的价值),就是背包放物品i得到的最大价值所以递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
dp数组如何初始化
首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。
dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。
那么很明显当 j < weight[0]
的时候,dp[0][j]
应该是 0,因为背包容量比编号0的物品重量还小。
当j >= weight[0]
时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。
for (int j = 0 ; j < weight[0]; j++) {
// 当然这一步,如果把dp数组预先初始化为0了,这一步就可以省略,但很多同学应该没有想清楚这一点。
dp[0][j] = 0;
}
// 正序遍历
for (int j = weight[0]; j <= bagweight; j++) {
dp[0][j] = value[0];
}
int goods = weight.length; // 获取物品的数量
int[][] dp = new int[goods][bagSize + 1];
// 初始化dp数组
// 创建数组后,其中默认的值就是0
for (int j = weight[0]; j <= bagSize; j++) {
dp[0][j] = value[0];
}
确定遍历顺序
可以先遍历物品或先遍历背包重量:
遍历物品:
for(int i = 1; i < weight.size(); i++) { // 遍历物品
for(int j = 0; j <= bagweight; j++) { // 遍历背包容量
if (j < weight[i]) dp[i][j] = dp[i - 1][j];
else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
}
}
先遍历重量:
// weight数组的大小 就是物品个数
for(int j = 0; j <= bagweight; j++) { // 遍历背包容量
for(int i = 1; i < weight.size(); i++) { // 遍历物品
if (j < weight[i]) dp[i][j] = dp[i - 1][j];
else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
}
}
public class BagProblem {
public static void main(String[] args) {
int[] weight = {1,3,4};
int[] value = {15,20,30};
int bagSize = 4;
testWeightBagProblem(weight,value,bagSize);
}
/**
* 动态规划获得结果
* @param weight 物品的重量
* @param value 物品的价值
* @param bagSize 背包的容量
*/
public static void testWeightBagProblem(int[] weight, int[] value, int bagSize){
// goods 货物数量
int goods = weight.length;
int[][] dp = new int[goods][bagSize + 1];
for(int i = weight[0]; i <= bagSize; i ++) {
dp[0][j] = value[0];
}
for(int i = 1; i < goods; i++) {
for(int j = 1; j <= bagSize; j ++) {
if (j < weight[i]) dp[i][j] = dp[i-1][j];
else dp[i][j] = Math.max(dp[i-1][j], dp[i][j-weight[i]] + value[i]);
}
}
// 打印dp数组
for (int i = 0; i < goods; i++) {
for (int j = 0; j <= bagSize; j++) {
System.out.print(dp[i][j] + "\t");
}
System.out.println("\n");
}
}
}
对于背包问题其实状态都是可以压缩的。
在使用二维数组的时候,递推公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
其实可以发现如果把dp[i - 1]那一层拷贝到dp[i]上,表达式完全可以是:dp[i][j] = max(dp[i][j], dp[i][j - weight[i]] + value[i]);
与其把dp[i - 1]这一层拷贝到dp[i]上,不如只用一个一维数组了,只用dp[j](一维数组,也可以理解是一个滚动数组)。
这就是滚动数组的由来,需要满足的条件是上一层可以重复利用,直接拷贝到当前层。
依旧是这个例子:
背包最大重量为4。
物品为:
重量 | 价值 | |
---|---|---|
物品0 | 1 | 15 |
物品1 | 3 | 20 |
物品2 | 4 | 30 |
确定dp数组(dp table)以及下标的含义
在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。
确定递推公式
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
dp数组如何初始化
dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j],那么dp[0]就应该是0,因为背包容量为0所背的物品的最大价值就是0。
那么dp数组除了下标0的位置,初始为0,其他下标应该初始化多少呢?
看一下递归公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
dp数组在推导的时候一定是取价值最大的数,如果题目给的价值都是正整数那么非0下标都初始化为0就可以了。
确定遍历顺序
for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
倒序遍历是为了保证物品i只被放入一次!。但如果一旦正序遍历了,那么物品0就会被重复加入多次!
举一个例子:物品0的重量weight[0] = 1,价值value[0] = 15
如果正序遍历
dp[1] = dp[1 - weight[0]] + value[0] = 15
dp[2] = dp[2 - weight[0]] + value[0] = 30
此时dp[2]就已经是30了,意味着物品0,被放入了两次,所以不能正序遍历。
public class BagProblem {
public static void main(String[] args) {
int[] weight = {1,3,4};
int[] value = {15,20,30};
int bagSize = 4;
testWeightBagProblem(weight,value,bagSize);
}
/**
* 动态规划获得结果
* @param weight 物品的重量
* @param value 物品的价值
* @param bagSize 背包的容量
*/
public static void testWeightBagProblem(int[] weight, int[] value, int bagSize){
// goods 货物数量
int goods = weight.length;
int[] dp = new int[bagSize + 1];
for(int i = 0; i < goods; i ++) {
for(int j = bagSize; j >= weight[i]; j--) {
dp = Math.max(dp[j-1], dp[j-weight[i]] + value[i]);
}
}
//打印dp数组
for (int j = 0; j <= bagWeight; j++){
System.out.print(dp[j] + " ");
}
}
}
题目链接:416. 分割等和子集
题目:给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。
示例 1:
输入:nums = [1,5,11,5]
输出:true
解释:数组可以分割成 [1, 5, 5] 和 [11] 。
示例 2:
输入:nums = [1,2,3,5]
输出:false
解释:数组不能分割成两个元素和相等的子集。
思路:
确定dp数组(dp table)以及下标的含义
dp[j] 代表容量 j 的背包在遍历到第 i 个物品时候可存放的最大价值, 这里背包容量是 target, 也就是数组所有元素的总和的二分之一, dp[j] 就是总和最大为 j 时数组里的数的总和的最大值.
确定递推公式
dp[j] = Math.max(dp[j], dp[j-nums[i]] + nums[i]), max里面的dp[j]是遍历第 i-1 个数时候留下的.
dp数组如何初始化
没有负数, 默认初始化为 0 即可.
确定遍历顺序
如滚动数组, i = 1~num.length, j从nums[i]的总和到0;
举例推导dp数组
时间复杂度:O(N*M)
空间复杂度:O(M)
, M是sum(nums) / 2
解决方案:
class Solution {
public boolean canPartition(int[] nums) {
if(nums == null || nums.length == 0) return false;
int sum = 0;
for(int i = 0; i < nums.length; i++) {
sum += nums[i];
}
if(sum % 2 != 0) return false;
int target = sum / 2;
int[] dp = new int[target + 1];
for(int i = 0; i < nums.length; i ++) {
for(int j = target; j >= nums[i]; j --) {
dp[j] = Math.max(dp[j], dp[j-nums[i]] + nums[i]);
}
}
return dp[target] == target;
}
}
小结:
小结: