面经来源于github上的
Java-Interview
在学习时,用自己的语言解释
Redis全称为:Remote Dictionary Server(远程数据服务),Redis是一种支持key-value等多种数据结构的存储系统。可用于缓存,事件发布或订阅,高速队列等场景。支持网络,提供字符串,哈希,列表,队列,集合结构直接存取,基于内存,可持久化。
特点1:丰富的数据类型
我们知道很多数据库只能处理一种数据结构:
传统SQL数据库处理二维关系数据;
MemCached数据库,键和值都是字符串;
文档数据库(MongoDB)是由Json/Bson组成的文档。
当然不是他们这些数据库不好,而是一旦数据库提供数据结构不适合去做某件事情的话,程序写起来就非常麻烦和不自然。
Redis虽然也是键值对数据库,但是和Memcached不同的是:Redis的值不仅可以是字符串,它还可以是其他五中数据机构中的任意一种。通过选用不同的数据结构,用户可以使用Redis解决各种各样的问题,使用Redis,你碰到一个问题,首先会想到是选用那种数据结构把哪些功能问题解决掉,有了多样的数据结构,方便你解决问题。
特点2:内存存储
数据库有两种:一种是硬盘数据库,一种是内存数据库。
硬盘数据库是把值存储在硬盘上,在内存中就存储一下索引,当硬盘数据库想访问硬盘的值时,它先在内存里找到索引,然后再找值。问题在于,在读取和写入硬盘的时候,如果读写比较多的时候,它会把硬盘的IO功能堵死。
内存存储是讲所有的数据都存储在内存里面,数据读取和写入速度非常快。
特点3:持久化功能
将数据存储在内存里面的数据保存到硬盘中,保证数据安全,方便进行数据备份和恢复。
Redis是key-value数据库,key的类型只能是String,但是value的数据类型就比较丰富了,主要包括五种:
String
Hash
List
Set
Sorted Set
(1)String字符串
语法
SET KEY_NAME VALUE
string类型是二进制安全的。意思是redis的string可以包含任何数据。比如jpg图片或者序列化的对象。 string类型是Redis最基本的数据类型,一个键最大能存储512MB。
(2)Hash哈希
语法
HSET KEY_NAME FIELD VALUE
Redis hash 是一个键值(key=>value)对集合。 Redis hash是一个string类型的field和value的映射表,hash特别适合用于存储对象。
(3)List列表
语法
//在 key 对应 list 的头部添加字符串元素 LPUSH KEY_NAME VALUE1.. VALUEN //在 key 对应 list 的尾部添加字符串元素 RPUSH KEY_NAME VALUE1..VALUEN //对应 list 中删除 count 个和 value 相同的元素 LREM KEY_NAME COUNT VALUE //返回 key 对应 list 的长度 LLEN KEY_NAME
Redis 列表是简单的字符串列表,按照插入顺序排序。 可以添加一个元素到列表的头部(左边)或者尾部(右边)
(4)Set集合
语法
SADD KEY_NAME VALUE1...VALUEn
Redis的Set是string类型的无序集合。 集合是通过哈希表实现的,所以添加,删除,查找的复杂度都是O(1)。
(5)Sorted Set有序集合
语法
ZADD KEY_NAME SCORE1 VALUE1.. SCOREN VALUEN
Redis zset 和 set 一样也是string类型元素的集合,且不允许重复的成员。 不同的是每个元素都会关联一个double类型的分数。
redis正是通过分数来为集合中的成员进行从小到大的排序。
zset的成员是唯一的,但分数(score)却可以重复。
String类型的value值最多支持的长度为512M,所以正确的答案是512M。
(1)String的使用场景
字符串类型的使用场景:信息缓存、计数器、分布式锁等等。
常用命令:get/set/del/incr/decr/incrby/decrby
实战场景1:记录每一个用户的访问次数,或者记录每一个商品的浏览次数
方案:
常用键名: userid:pageview 或者 pageview:userid,如果一个用户的id为123,那对应的redis key就为pageview:123,value就为用户的访问次数,增加次数可以使用命令:incr。
使用理由:每一个用户访问次数或者商品浏览次数的修改是很频繁的,如果使用mysql这种文件系统频繁修改会造成mysql压力,效率也低。而使用redis的好处有二:使用内存,很快;单线程,所以无竞争,数据不会被改乱。
实战场景2:缓存频繁读取,但是不常修改的信息,如用户信息,视频信息
方案:
业务逻辑上:先从redis读取,有值就从redis读取,没有则从mysql读取,并写一份到redis中作为缓存,注意要设置过期时间。
键值设计上:
直接将用户一条mysql记录做序列化(通常序列化为json)作为值,userInfo:userid 作为key,键名如:userInfo:123,value存储对应用户信息的json串。如 key为:"user:id :name:1", value为"{"name":"leijia","age":18}"。
实战场景3:限定某个ip特定时间内的访问次数
方案:
用key记录IP,value记录访问次数,同时key的过期时间设置为60秒,如果key过期了则重新设置,否则进行判断,当一分钟内访问超过100次,则禁止访问。
实战场景4:分布式session
我们知道session是以文件的形式保存在服务器中的;如果你的应用做了负载均衡,将网站的项目放在多个服务器上,当用户在服务器A上进行登陆,session文件会写在A服务器;当用户跳转页面时,请求被分配到B服务器上的时候,就找不到这个session文件,用户就要重新登陆。
如果想要多个服务器共享一个session,可以将session存放在redis中,redis可以独立于所有负载均衡服务器,也可以放在其中一台负载均衡服务器上;但是所有应用所在的服务器连接的都是同一个redis服务器。
(2)Hash的使用场景
以购物车为例子,用户id设置为key,那么购物车里所有的商品就是用户key对应的值了,每个商品有id和购买数量,对应hash的结构就是商品id为field,商品数量为value。
如果将商品id和商品数量序列化成json字符串,那么也可以用上面讲的string类型存储。下面对比一下这两种数据结构:
对比项 | string(json) | hash |
---|---|---|
效率 | 很高 | 高 |
容量 | 低 | 低 |
灵活性 | 低 | 高 |
序列化 | 简单 | 复杂 |
总结一下:
当对象的某个属性需要频繁修改时,不适合用string+json,因为它不够灵活,每次修改都需要重新将整个对象序列化并赋值;如果使用hash类型,则可以针对某个属性单独修改,没有序列化,也不需要修改整个对象。比如,商品的价格、销量、关注数、评价数等可能经常发生变化的属性,就适合存储在hash类型里。
(3)List的使用场景
列表本质是一个有序的,元素可重复的队列。
实战场景:定时排行榜
list类型的lrange命令可以分页查看队列中的数据。可将每隔一段时间计算一次的排行榜存储在list类型中,如QQ音乐内地排行榜,每周计算一次存储再list类型中,访问接口时通过page和size分页转化成lrange命令获取排行榜数据。
但是,并不是所有的排行榜都能用list类型实现,只有定时计算的排行榜才适合使用list类型存储,与定时计算的排行榜相对应的是实时计算的排行榜,list类型不能支持实时计算的排行榜,下面介绍有序集合sorted set的应用场景时会详细介绍实时计算的排行榜的实现。
(4)Set的使用场景
集合的特点是无序性和确定性(不重复)。
实战场景:收藏夹
例如QQ音乐中如果你喜欢一首歌,点个『喜欢』就会将歌曲放到个人收藏夹中,每一个用户做一个收藏的集合,每个收藏的集合存放用户收藏过的歌曲id。
key为用户id,value为歌曲id的集合。
(5)Sorted Set的使用场景
有序集合的特点是有序,无重复值。与set不同的是sorted set每个元素都会关联一个score属性,redis正是通过score来为集合中的成员进行从小到大的排序。
实战场景:实时排行榜
QQ音乐中有多种实时榜单,比如飙升榜、热歌榜、新歌榜,可以用redis key存储榜单类型,score为点击量,value为歌曲id,用户每点击一首歌曲会更新redis数据,sorted set会依据score即点击量将歌曲id排序。
什么是持久化?
持久化(Persistence),即把数据(如内存中的对象)保存到可永久保存的存储设备中(如磁盘)。持久化的主要应用是将内存中的对象存储在数据库中,或者存储在磁盘文件中、XML数据文件中等等。
还可以从如下两个层面简单的理解持久化 :
应用层:如果关闭(shutdown)你的应用然后重新启动则先前的数据依然存在。
系统层:如果关闭(shutdown)你的系统(电脑)然后重新启动则先前的数据依然存在。
Redis为什么要持久化?
Redis是内存数据库,为了保证效率所有的操作都是在内存中完成。数据都是缓存在内存中,当你重启系统或者关闭系统,之前缓存在内存中的数据都会丢失再也不能找回。因此为了避免这种情况,Redis需要实现持久化将内存中的数据存储起来。
Redis如何实现持久化?
Redis官方提供了不同级别的持久化方式:
RDB持久化:能够在指定的时间间隔能对你的数据进行快照存储。
AOF持久化:记录每次对服务器写的操作,当服务器重启的时候会重新执行这些命令来恢复原始的数据,AOF命令以redis协议追加保存每次写的操作到文件末尾。Redis还能对AOF文件进行后台重写,使得AOF文件的体积不至于过大。
不使用持久化:如果你只希望你的数据在服务器运行的时候存在,你也可以选择不使用任何持久化方式。
同时开启RDB和AOF:你也可以同时开启两种持久化方式,在这种情况下当redis重启的时候会优先载入AOF文件来恢复原始的数据,因为在通常情况下AOF文件保存的数据集要比RDB文件保存的数据集要完整。
这么多持久化方式我们应该怎么选?在选择之前我们需要搞清楚每种持久化方式的区别以及各自的优劣势。
RDB(Redis Database)持久化是把当前内存数据生成快照保存到硬盘的过程,触发RDB持久化过程分为手动触发和自动触发。
(1)手动触发
手动触发对应save命令,会阻塞当前Redis服务器,直到RDB过程完成为止,对于内存比较大的实例会造成长时间阻塞,线上环境不建议使用。
(2)自动触发
自动触发对应bgsave命令,Redis进程执行fork操作创建子进程,RDB持久化过程由子进程负责,完成后自动结束。阻塞只发生在fork阶段,一般时间很短。
在redis.conf配置文件中可以配置:
save
表示xx秒内数据修改xx次时自动触发bgsave。 如果想关闭自动触发,可以在save命令后面加一个空串,即:
save ""
还有其他常见可以触发bgsave,如:
如果从节点执行全量复制操作,主节点自动执行bgsave生成RDB文件并发送给从节点。
默认情况下执行shutdown命令时,如果没有开启AOF持久化功能则 自动执行bgsave。
bgsave工作机制
(1)执行bgsave命令,Redis父进程判断当前是否存在正在执行的子进 程,如RDB/AOF子进程,如果存在,bgsave命令直接返回。
(2)父进程执行fork操作创建子进程,fork操作过程中父进程会阻塞,通 过info stats命令查看latest_fork_usec选项,可以获取最近一个fork操作的耗时,单位为微秒
(3)父进程fork完成后,bgsave命令返回“Background saving started”信息并不再阻塞父进程,可以继续响应其他命令。
(4)子进程创建RDB文件,根据父进程内存生成临时快照文件,完成后对原有文件进行原子替换。执行lastsave命令可以获取最后一次生成RDB的 时间,对应info统计的rdb_last_save_time选项。
(5)进程发送信号给父进程表示完成,父进程更新统计信息,具体见 info Persistence下的rdb_*相关选项。
-- RDB持久化完 --
AOF(append only file)持久化:以独立日志的方式记录每次写命令, 重启时再重新执行AOF文件中的命令达到恢复数据的目的。AOF的主要作用是解决了数据持久化的实时性,目前已经是Redis持久化的主流方式。
AOF持久化工作机制
开启AOF功能需要配置:appendonly yes,默认不开启。
AOF文件名 通过appendfilename配置设置,默认文件名是appendonly.aof。保存路径同 RDB持久化方式一致,通过dir配置指定。
AOF的工作流程操作:命令写入 (append)、文件同步(sync)、文件重写(rewrite)、重启加载 (load)。
(1)所有的写入命令会追加到aof_buf(缓冲区)中。
(2)AOF缓冲区根据对应的策略向硬盘做同步操作。
AOF为什么把命令追加到aof_buf中?Redis使用单线程响应命令,如果每次写AOF文件命令都直接追加到硬盘,那么性能完全取决于当前硬盘负载。先写入缓冲区aof_buf中,还有另一个好处,Redis可以提供多种缓冲区同步硬盘的策略,在性能和安全性方面做出平衡。
(3)随着AOF文件越来越大,需要定期对AOF文件进行重写,达到压缩的目的。
(4)当Redis服务器重启时,可以加载AOF文件进行数据恢复。
AOF重写(rewrite)机制
重写的目的:
减小AOF文件占用空间;
更小的AOF 文件可以更快地被Redis加载恢复。
AOF重写可以分为手动触发和自动触发:
手动触发:直接调用bgrewriteaof命令。
自动触发:根据auto-aof-rewrite-min-size和auto-aof-rewrite-percentage参数确定自动触发时机。
auto-aof-rewrite-min-size:表示运行AOF重写时文件最小体积,默认 为64MB。
auto-aof-rewrite-percentage:代表当前AOF文件空间 (aof_current_size)和上一次重写后AOF文件空间(aof_base_size)的比值。
自动触发时机
当aof_current_size>auto-aof-rewrite-minsize 并且(aof_current_size-aof_base_size)/aof_base_size>=auto-aof-rewritepercentage。
其中aof_current_size和aof_base_size可以在info Persistence统计信息中查看。
AOF文件重写后为什么会变小?
(1)旧的AOF文件含有无效的命令,如:del key1, hdel key2等。重写只保留最终数据的写入命令。
(2)多条命令可以合并,如lpush list a,lpush list b,lpush list c可以直接转化为lpush list a b c。
AOF文件数据恢复
数据恢复流程说明:
(1)AOF持久化开启且存在AOF文件时,优先加载AOF文件。
(2)AOF关闭或者AOF文件不存在时,加载RDB文件。
(3)加载AOF/RDB文件成功后,Redis启动成功。
(4)AOF/RDB文件存在错误时,Redis启动失败并打印错误信息。
-- AOF持久化完 --
AOF(append only file)持久化:以独立日志的方式记录每次写命令, 重启时再重新执行AOF文件中的命令达到恢复数据的目的。AOF的主要作用是解决了数据持久化的实时性,目前已经是Redis持久化的主流方式。
AOF持久化工作机制
开启AOF功能需要配置:appendonly yes,默认不开启。
AOF文件名 通过appendfilename配置设置,默认文件名是appendonly.aof。保存路径同 RDB持久化方式一致,通过dir配置指定。
AOF的工作流程操作:命令写入 (append)、文件同步(sync)、文件重写(rewrite)、重启加载 (load)。
(1)所有的写入命令会追加到aof_buf(缓冲区)中。
(2)AOF缓冲区根据对应的策略向硬盘做同步操作。
AOF为什么把命令追加到aof_buf中?Redis使用单线程响应命令,如果每次写AOF文件命令都直接追加到硬盘,那么性能完全取决于当前硬盘负载。先写入缓冲区aof_buf中,还有另一个好处,Redis可以提供多种缓冲区同步硬盘的策略,在性能和安全性方面做出平衡。
(3)随着AOF文件越来越大,需要定期对AOF文件进行重写,达到压缩的目的。
(4)当Redis服务器重启时,可以加载AOF文件进行数据恢复。
AOF重写(rewrite)机制
重写的目的:
减小AOF文件占用空间;
更小的AOF 文件可以更快地被Redis加载恢复。
AOF重写可以分为手动触发和自动触发:
手动触发:直接调用bgrewriteaof命令。
自动触发:根据auto-aof-rewrite-min-size和auto-aof-rewrite-percentage参数确定自动触发时机。
auto-aof-rewrite-min-size:表示运行AOF重写时文件最小体积,默认 为64MB。
auto-aof-rewrite-percentage:代表当前AOF文件空间 (aof_current_size)和上一次重写后AOF文件空间(aof_base_size)的比值。
自动触发时机
当aof_current_size>auto-aof-rewrite-minsize 并且(aof_current_size-aof_base_size)/aof_base_size>=auto-aof-rewritepercentage。
其中aof_current_size和aof_base_size可以在info Persistence统计信息中查看。
AOF文件重写后为什么会变小?
(1)旧的AOF文件含有无效的命令,如:del key1, hdel key2等。重写只保留最终数据的写入命令。
(2)多条命令可以合并,如lpush list a,lpush list b,lpush list c可以直接转化为lpush list a b c。
AOF文件数据恢复
数据恢复流程说明:
(1)AOF持久化开启且存在AOF文件时,优先加载AOF文件。
(2)AOF关闭或者AOF文件不存在时,加载RDB文件。
(3)加载AOF/RDB文件成功后,Redis启动成功。
(4)AOF/RDB文件存在错误时,Redis启动失败并打印错误信息。
-- AOF持久化完 --